You are currently browsing the category archive for the ‘energia’ category.

Tämä on yksi niistä postauksista mitä en olisi uskonut tarpeelliseksi, mutta aina oppii uutta. Kummallisen moni näyttää elävän siinä käsityksessä, että maanviljelyksen “jätevirrat” voivat olla merkittävä energianlähde. Olen kirjoittanut tästä ennenkin, mutta palataan nyt tähän. Kertaus on opintojen äiti.

giphy

Kestävä bioenergian potentiaali

Suomessa mm. Neocarbon projekti ja Vihreät väittävät peltobiomassassa piilevän yli 20 TWh:n aarteen. Lähteenä tälle on Vihreillä Hannu Mikkolan väitöskirja.  Jos oikein sitä luen, mitään ympäristövaikutusten arviointia ei oikeastaan ole siinä tehty tai verrattu esimerkiksi vaihtoehtoisia toimintatapoja toisiinsa. Siellä ei siis ole pohdittu olisiko esimerkiksi metsittäminen parempi vaihtoehto tai sitä voidaanko näitä energiaplantaaseja tarvita tulevaisuudessa ruuantuotantoon.  On laskettu hehtaareja ja hehtaarikohtaisia tuottoja mm. ruokohelppiplantaaseilta ja päädytty tulokseen, että oljessa olisi energiaa ehkä 8 TWh ja että ruokohelvestä voisi saada ehkä 12 TWh. Noita voi verrata esimerkiksi Suomen energian kulutukseen, joka on lähempänä 400 TWh:a, mutta onko todellinen potentiaali likimainkaan edes tuon suuruinen? Rohkenen epäillä, että ei ole.

ECOFYS arvioi sivuvirtojen kuten oljen kestävää potentiaalia EU:ssa. He siis arvioivat myös sitä, että osalle näistä sivuvirroista on muutakin käyttöä ja kaikkea niistä ei voi ekologisin perustein hyödyntää (oljesta osa on jätettävä maaperään). He eivät antaneet arvioita Suomelle, mutta Tanskaa kyllä käsiteltiin. Oljen kestäväksi potentiaaliksi arvioitiin noin 3.2 miljoonaa tonnia “märkää massaa” (wet matter). Tästä määrästä osaa tarvitaan esim. karjan kasvatuksessa, mutta 1.4 miljoonaa tonnia arvioitiin potentiaaliksi energiantuotannossa. Jos energiatiheys on noin 9MJ/kg, tuo tarkoittaa noin 3.5 TWh energiaa. Tuo määrä on Tanskassa käytössä jo nyt eli lisäyspotentiaalia ei ole muuten kuin kestävyysnäkökulmat sivuuttaen (mitä 100%RE visionäärit valitettavasti tekevät).

Miten tuo arvio Tanskalle suhtautuu meihin? Arvio Tanskalle oli siis, että oljista 3.5TWh, kun taas Mikkolan väitöskirjassa oli Suomelle 8TWh. Tanska tuottaa viljoja vuodessa reilut 9 miljoonaa tonnia, kun taas me noin 3.6 miljoonaa tonnia. Kaiken järjen mukaan meidän kestävä potentiaalimme oljelle on alhaisempi kuin Tanskan, koska olkea syntynee vähemmän? Mikkolan väitöskirjan luku lienee vain arvio kaiken pelloilla kasvavan biomassan (jyvät poislukien) energiasisällöstä. Realistinen potentiaali liikkunee TWh suuruusluokassa. Onko sen käytössä mitään järkeä kun kustannukset ja vaadittava työ otetaan huomioon onkin sitten toinen kysymys. Pääpointti on kuitenkin se, että näistä jätepuroista puhuminen on korvikepuuhaa todellista dekarbonisaatiota odotellessa.

 

Advertisements

Lappeenrannassa rakennelleen malleja joissa yhden jos toisen alueen sähköntarve katettaisiin täysin uusiutuvilla.

Kuva 1: 100% RE pukkaa...koetetaan sivuuttaa tuo energian ja sähkön sotkeminen.

Kuva 1: 100% RE pukkaa…koetetaan sivuuttaa tuo energian ja sähkön sotkeminen.

Olen kommentoinut tyytymättömyyttäni näihin ulostuloihin aikaisemmin (tässä ja tässä). Nyt ryhmä on tehnyt nettiin visualisoinnin jota kutsutaan vaatimattomasti nimellä “Internet of Energy” (jos voin ehdottaa, “IntREnet of energy” olisi vielä parempi). Tämä visualisointi kuulemma demonstroi tarkasti kuinka täysin uusiutuviin pohjaava sähköntuotanto toimii ja siksi meidän pitäisi vain alkaa rakentamaan. Olen erimieltä. Visualisointi ei lisää substanssia vaan nojaa pohjalla olevaan malliin. Mikäli malli on puutteellinen, ei sitä voi korjata visualisoinnilla. Lappeenrannan ryhmä osoittaa kuitenkin esimerkillistä avoimuutta jakamalla visualisoinnin yhteydessä siihen liittyvät data-tiedostot. Tiedostot ovat suuria Excel-tiedostoja, joista löytyy tuntikohtaiset tuotanto- ja kulutustiedot eri alueista (myös tiedot siitä kuinka varastoja täydennetään ja kuinka niitä puretaan). En ymmärrä miksi 100%RE -skenaarioita tehtaillaan juuri Excelillä, mutta näillä mennään. Seuraavaksi joitain poimintoja Euroopan alueen skenaariosta.

  • Miksi Norjan ja Islannin sähkönkulutuksen vuodenaikavaihtelu puuttuu?
  • Miksi Ruotsi tuottaa sähköä alle 80TWh, kun todellisuudessa heidän tuotantonsa on ollut noin 140TWh? Mallissa Ruotsi tuo sähköä noin 1800 kertaa enemmän kuin vie? Suomi tuottaa mallissa enemmän sähköä kuin Ruotsi.
  • Onko joku kysynyt haluavatko Ruotsin lisäksi esim. Sveitsi ja Benelux maat oikeasti tuoda noin paljon enemmän sähköä kuin vievät?
  • Miksi Norja tuottaa mallissa 265TWh, kun todellisuudessa he tuottavat noin 130TWh? Tällä hetkellä liki kaikki heidän tuotantonsa on vesivoimaa, mutta mallissa sitä ei ole kuin 96TWh. Häh?
  • Monessa maassa malli olettaa tuulivoiman kapasiteettikertoimen olevan noin 50%. Miksi näin? Toisaalta esimerkiksi Saksassa kerroin on mallissa noin 37%, kun toteutunut on 20-25% välillä. Tämä liioittelee tuotantoa merkittävästi. Suomelle malli olettaa n. 30% mikä on järkevämpää. (Ja ei, kyse ei ole siitä, että mallissa oletettaisiin suuria määriä esimerkiksi merituulivoimaa. Melkein kaikki tuulivoima on mallissa sijoitettu maalle.)
  • Iso-Britanniasta Ranskaan ja Benelux maihin oletetaan 26GW+17GW siirtokapasiteettia. Onko tämä järkevää, kun todellinen on käsittääkseni noin 2+1GW? Ylipäätään Iso-Britannia on mallissa massiivinen sähkönviejä. (Suomesta pitäisi muuten vetää Balttiaan 3GW piuha Ruotsiin menevän 3GW piuhan lisäksi.)

Muutama huomio myös tuulivoiman tuotantoprofiileista on paikallaan. Voimme helposti laskea todennäköisyysjakaumat sille, että tuulivoiman tuotanto on joku tietty osuus kapasiteetista. Seuraava kuva näyttää tuloksen Suomesta sekä mallin mukaan, että todelliseen tuotantotietoon perustuen ( vuosi 2016 tähän asti).

Kuva x: Jakauma Suomen tuulivoimatuotannosta. Kvalitatiivista yhteneväisyyttä havaittavissa, mutta mutta...

Kuva 2: Jakauma Suomen tuulivoimatuotannosta. Kvalitatiivista yhteneväisyyttä havaittavissa, mutta mutta…

Jotain kvalitatiivista yhdenmukaisuutta on havaittavissa, mutta huomaa kuinka LUT-mallin jakauma vaikuttaa huomattavasti toteutunutta leveämmältä. Se näyttää antavan merkittävästi suuremman todennäköisyyden korkeaan tuotantoon kuin mitä toteutunut antaa ymmärtää. Entä sama Tanskassa, joka on mallissa merkittävä sähkönviejä?

Kuva x: Sama Tanskalle yhdessä sen kanssa miltä jakauma oikeasti näytti vuonna 2015. Ööhh??? Miten tuollaisen jakauman saa? Honest question.

Kuva 3: Tuotannon jakauma Neocarbon-mallissa ja miltä se oikeasti näytti vuonna 2015.

??? Jakauma ei näytä juuri lainkaan siltä miltä todellinen tuotantojakauma näyttää. Mitä ihmettä tässä on tapahtunut? Vastaavia esimerkkejä on muitakin…tässä tulos Iso-Britannialle.

Kuva 4: Sama Englannista, joka on myös mallissa merkittävä sähkön viejä.

Kuva 4: Sama Briteistä, joka on myös mallissa merkittävä sähkön viejä.

Jakauma näyttää pikemminkin vastakkaiselta kuin se mikä on toteutunut. Todennäköisyys on mallissa suurin maksimiteholla. Missaanko nyt jotain olennaista? Päätäni alkaa taas särkeä.headache

Lopuksi on myös hyvä huomata, että tässä “100%RE”-mallissa on ympäri Eurooppaa yli 150GW kaasuturbiinikapasiteettia. Suomessakin näitä laitoksia olisi yli 6GW edestä. Sitä miksi näitä tarvitaan näkyy mallissa hienosti esimerkiksi Saksassa Joulun aikaan. Heidän tuotantonsa (ks. kuva) on yli 120 GW, mutta sitten alkaa päivä jota verkon vakaudesta vastuussa olevat pitäisivät varmasti jännittävänä haasteena. Noin 10 tunnin aikana uusiutuvasta tuotannosta katoaa yli 100 GW, kun heidän kulutuksena on jossain 70GW nurkilla. Kaikki vaipat heitetään polttouuniin, tuodaan mitä voidaan, mutta tämä ei silti riitä. He käynnistävät nopeasti yli 20GW edestä kaasuturbiineja, jotta Joulu ei menisi pilalle. Näitä kaasuvoimaloita on siis ympäri Eurooppaa ja niiden käyttäaste on maasta riippuen 3-22% (keskiarvo 12%). Mallissa ei kerrota mistä se kaasu ilmestyi, mutta mitään synteettisen kaasun tuotantoon liittyviä menoeriä en siitä löydä. Tulee siis luultavasti töpselistä.

Kuva x: Saksa Joulun alla. Hauska päivä verkon ylläpitäjillä?

Kuva 5: Saksa Joulun alla. Hauska päivä verkon ylläpitäjillä. (Vihreällä tuuli+aurinko+vesivoima, punaisella siihen on vielä lisätty tuonti, varastot ja bio- ja jätevoima. Ei riitä…)

Kuva x: höyryvoimalat ja kaasuturbiinit auttoivat Joulun tunnelmaan.

Kuva 6: 24GW kaasuturbiineja pelasti Joulun tunnelman.

Summa summarum. Yhtä sun toista korjattavaa mallissa löytyy ja ehkä kannattaa vielä odottaa hetki ennen kuin aloitamme vain rakentamaan.

Edit: Ilmeisesti kaasun on tarkoitus olla synteettistä, mutta en ymmärrä kuinka prosessin vaatima energia oli jyvitetty kulutusprofiileihin. Myös hyötysuhde on itselleni epäselvä.

Edit : Tuulivoiman tuotantojakaumat näyttävät Excel-tiedostossa kummallisilta, koska ilmeisesti kategoriaan “excess” on laitettu hämäävästi osa tuotannosta. “Wind onshore” ja “Wind offshore” kategoria ilmeisesti pitää vain sisällään sen osan tuotantoa mikä käytetään. Jos tämä tulkinta on oikein, niin esimerkiksi Tanskassa hukattu tuulivoimateho voi mallissa olla samaa suuruusluokkaa kuin kulutettu teho.  Eli asennettu kapasiteetti on noin kaksinkertainen siihen nähden mitä voimalat korkeintaan syöttävät verkkoon. Tämä muuten myös korjaa kapasiteettikertoimia alaspäin, koska ne maat joiden kapasiteettikerroin on anomaalisen korkea, ovat maita joissa tämä hukattu teho on suurempi.

ONR 32MJ electromagnetic railgun (EMRG)

Startupien on oltava radikaaleja, innovatiivisia, ja optimistisia. Kukaan ei pahastu, jos startup on hiukan liiankin optimistinen. Mutta missä menee raja?  Innovaation ja innostumisen vastavoimana on oltava itsekuri ja itsekritiikki. Mitä tapahtuu, jos nämä puuttuvat?

Startup nimeltä Teraloop on esittänyt varsin ällistyttäviä ajatuksia. Uusiutuvien energialähteiden suurin ongelma on niiden ajoittaisuus: energiaa on pystyttävä varastoimaan niiksi ajoiksi, kun ei tuule tai aurinko ei paista. Tähän mennessä ei kerta kaikkiaan ole ollut tekniikoita, joilla pystyttäisiin varastoimaan gigawattitunneittain energiaa moneksi päiväksi kustannustehokkaaseen hintaan. Teraloop väittää löytäneensä ratkaisun, liikuttamalla suuria massoja renkaan muotoisella radalla maan alla.

Fysiikkaa vähänkään tuntevissa idea on herättänyt ensin ällistystä, sitten mielenkiintoa, ja lopulta syvää epäuskoa.  Idea ei välttämättä varsinaisesti riko fysiikan lakeja, mutta se ei vaikuta millään tavalla realistiselta. Skeptisiä arvioita on jo esitetty Kaj Luukon aiemmassa blogissa.

Erikoisia väitteitä ja erikoisia startupeja on maailma pullollaan, ja asian voisi sinällään jättää sikseen. Tarkempi penkominen kuitenkin osoitti vielä kummallisempia väitteitä. Yhtiö itse sanoo saaneensa Tekesilta tutkimusrahoitusta ja sen lisäksi tekevänsä yhteistyötä VTT:n kanssa. Käytännössä VTT-yhteistyö viitannee Tekniikka & talouden artikkelissa mainittuun toteutettavuustutkimukseen, joka on tilaustyönä teetetty ulkopuolisella rahoituksella.  Yhtiö on listattu myös yhdeksi Vaasa Entrepreneurship Societyn Top 30 energia-alan startupiksi; VES:n tiedoissa yhtiö ilmoittaa saavansa rahoitusta myös Fortumilta

Näistä yhteistyökuvioista ei ole julkisuudessa ollut mitään tarkempaa tietoa. Jos yhtiön ympärillä todellakin liikkuu verovaroja, idean taustoja on syytä penkoa paljon tarkemmin. Onko yhtiö todellakin keksinyt jotakin mullistavaa, vai ovatko sen ideat tarkemmin penkoenkin yhtä huteria kuin pikaraapaisulla katsoen?

Ryhmä fysiikan ja tekniikan alan ammattilaisia päätti joukkoistaa analyysin. Kirjoitus julkaistaan yhtä aikaa omissa blogeissamme. Kirjoittajat aakkosjärjestyksessä: Kaj Luukko (Gaia-blogi), Jani-Petri Martikainen (PassiiviIdentiteetti-blogi), Jakke Mäkelä (Zygomatica-blogi), Rauli Partanen (Kaikenhuippu-blogi), Aki Suokko (Palautekytkentöjä-blogi), Ville Tulkki.

Tämä kirjoitus keskittyy vain fysiikkaan ja teknologiaan, ottamatta kantaa toteutuksen hintaan. Esiin tulevista kysymyksistä voi kuitenkin helposti päätellä, että hinta tulisi olemaan absurdin suuri — olettaen, että järjestelmä ylipäätään toimisi, mikä näyttää varsin epätodennäköiseltä.

Screen Shot 2016-04-11 at 17.20.57 Screen Shot 2016-04-11 at 17.21.16

 

Mitä yhtiön konseptista siis voi päätellä nykyisten tietojen  perusteella? Onko syytä olettaa, että se olisi fyysisesti millään tavalla realistinen missään aikataulussa?

Mitä ideasta on väitetty?

Asiasta uutisoi tiettävästi ensimmäisenä tammikuussa 2016 Tekniikka & talous. Se ilmoitti, että  “hanke on tarkoitus toteuttaa yhteistyössä yhden Pohjoismaiden suurimpiin kuuluvan energiayhtiön ja suomalaisten teknologiayhtiöiden kanssa – tämän tarkemmin ei Teraloop halua yhteistyökumppaneitaan vielä tässä vaiheessa nimetä.

Huhtikuussa aiheesta kirjoitti Tekniikan Akatemia TAF joka jakaa joka toinen vuosi tunnetun Millennium-teknologiapalkinnon. TAF:n tiedotteessa ei juurikaan avata teknisiä yksityiskohtia, mutta siinä mainitaan, että yhtiö väittää pääsevänsä 500 MW tehoihin ja 16 GWh kapasiteettiin. Myös yhtiön nettisivuilla todetaan nämä luvut.

Aiheesta on kirjoittanut innostuneesti mm. industrialprime.fi.

Screen Shot 2016-04-11 at 17.21.28

Mitä ideasta todellisuudessa tiedetään?

Julkista teknistä tietoa on yhden patenttihakemuksen verran (WO2016/001478). Hakemusta arvioidaan tarkemmin blogin lopussa, mutta tähän on tiivistetty se informaatio, joka hakemuksesta on mahdollista päätellä.

Patenttihakemuksen perusteella Teraloopin ajatuksena on rakentaa pyöreä tunneli, jonka lattiassa on kestomagneetteja. Suurien painoelementtien pohjassa on kestomagneetteja, joiden avulla ne kelluvat lattian magneettien yläpuolella. Elementtien yläpinnassa on myös kestomagneetteja. Elementtejä liikutetaan säätelemällä tunnelin katossa olevia sähkömagneetteja, kuten esimerkiksi maglev-junissa tehdään. Elementtejä yhdistetään toisiinsa, ja niistä rakennetaan rengas tunnelin sisään.

Screen Shot 2016-04-11 at 17.21.36Screen Shot 2016-04-11 at 17.21.57

Patenttihakemuksen esimerkissä (joka siis on vain yksi mahdollisuus) ympyränmuotoisen radan säde on 2,5 km, ja se koostuu osista joiden paino on 30-40 tonnia ja mitat 1,5x2x8 metriä. Ketjun kokonaismassaksi tulisi hakemuksen mukaan noin 70 000 tonnia ja tiheydeksi noin 1500 kg/m3. Osat voivat olla esimerkiksi betonia.

Teraloop ei ole nähtävästi kertaakaan esittänyt konkreettisia lukuja, joissa olisi yhtä aikaa ilmoitettu energiakapasiteetti, massa, radan säde, sekä nopeus. Jos kolme näistä tiedetään, neljäs voidaan laskea. Vain kahdesta eri konfiguraatiosta on numeroarvoja:

  1. Patenttihakemus. Säde 2500 metriä, paino 70 000 tonnia. Energiakapasiteetti mahdollisesti TWh-luokkaa. Nopeus tuntematon.
  2. Tiedotteet. Energiakapasiteetti 16 GWH, säde 250 metriä. Massa tuntematon, nopeus tuntematon.

Kummassakin skenaariossa on ongelmia. Jos skenaariossa 1. oletetaan että kapasiteetti olisi 1 TWh, nopeudeksi saataisiin näiden lukujen perusteella noin  10 km/s (ks alempana). On vaikea kuvitella, että keksijät olisivat tosissaan tällaista ehdottamassa. Tämä nopeushan vastaa lähes pakonopeutta maapallolta, eli tällä nopeudella Teraloopin saisi helposti ammuttua maata kiertävälle radalle.

Toisaalta, jos skenaariossa 2 oletetaan sama tiheys kuin skenaariossa 1, massa jäisi tälle lyhyemmälle renkaalle niin paljon pienemmäksi, että 16 GWh saavuttaminen vaatisi taas saman maata kiertävän nopeuden.

Päädyimme käyttämään näissä laskuissa tulkintaa, joka on Teraloopin kannalta edullisin mahdollinen. Käytämme patenttihakemuksen lukuja radalle ja massalle, mutta oletamme että sillä yritetään saavuttaa vain tiedotteissa oleva 16 GWh kapasiteetti.

Tässä esitetty analyysi on siis käytännössä äärimmäisen ylioptimistinen. Teraloopin varsinaisiin lupauksiin pääseminen olisi moninkertaisesti vaikeampaa. Kuten kuitenkin huomataan, näilläkään luvuilla systeemi ei ole toteutettavissa.

Idean perusfysiikkaa

Idean perusfysiikka on melko yksinkertainen. Pyörivän renkaan liike-energia on

E= (½)*I*ω2,

Missä I on hitausmomentti ja ω on pyörimisnopeus (rad/s). Tällaisen renkaan hitausmomentti on
I = m* R2

Missä m on renkaan massa ja R sen säde. Toisaalta ratanopeus v=ω*R, jolloin voidaan kirjoittaa

E = (½)m*v2 =   (½)*m*R22

Mikäli 70 000 tonnin massaan halutaan varastoida uutisotsikoissa mainittu 16 GWh energiaa, tulisi massan liikkua 4700 kilometrin tuntivauhtia, eli 1300 m/s. Vertailun vuoksi äänen nopeus ilmassa on noin 330 m/s,  ja yliäänikone Concorden nopeus oli “vain” 600 m/s. (Patentihakemuksessa mainitaan itse asiassa jopa 1TWh varastointi tuohon samaan massaan mikä tarkoittaisi yli 10000 m/s nopeutta mikä on lähellä pakonopeutta maapallolta)

Jos renkaan säde on 2500 metriä, voidaan tästä myös laskea, että  ω~0.5 rad/s, eli rengas pyörähtää ympäri noin 12 sekunnissa. (Jos säde olisi vain 250 m, sen pitäisi pyöriä ympäri kerran sekunnissa).

Teraloopin vaunujen nopeuden tulisi siis olla samaa suuruusluokkaa kuin esimerkiksi raidetykkien kranaattien nopeuden niiden iskeytyessä maaliinsa. Youtube-video näyttää esimerkin siitä mitä törmäyksestä seuraa. Teraloopin junan törmäyksessä vapautuisi 16GWh energiaa, joka vastaa melko tarkasti Hiroshiman atomipommin energiasisältöä. Ainut este tunnelin seinän ja junan välillä on muutama millimetriä jonkinlaista magneettikenttää.  (Patenttihakemuksessa mainittu TWh, vastaa USA:n vetypommien kokoa.)

Teraloopin vaatimat nopeudet havainnollistettuna.

Teraloopin vaatimat nopeudet havainnollistettuna.

Vertailu maglev-junaan
Teraloop kertoo junansa liikkuvan Maglev-junan tapaan eli käyttävän magneettista levitointia. Toteutettujen Maglev-junien yhteisenä piirteenä on kuitenkin alhainen paino ja melko suora rata. Esimerkiksi Shanghain lentokentän ja kaupungin väliä kulkeva Maglev-juna painaa noin 100 tonnia ja on mitoiltaan 153m x 3,7m x 4,2 m. Junan maksiminopeus on n. 120 m/s jolloin kineettinen energia olisi noin 0.2MWh eli noin 1/100000 osa Teraloopin varastoimasta energiasta. Keskitiheys Shanghain junassa on  42 kg/m3. Jos oletamme Teraloopin junan tiheydeksi patenttihakemuksessa olleen 1500 kg/m3, on maglev-junan tiheys noin 36 kertaa Teraloopin junaa alhaisempi.

Maglev-junien suhteellisen alhainen tiheys mahdollistaa levitoinnin käytännössä toteutettavilla magneettikentillä. Radan on myös oltava melko suora, koska jyrkkä kaarre (pieni kaarevuussäde) yhdistettynä suureen nopeuteen tarkoittaa suuria g-voimia kaarteissa. Suurten g-voimien hallinta puolestaan vaatii entistä voimakkaampia magneettikenttiä.

Teraloopin ideassa junan tulisi siis olla maailman suurimpien junien kokoluokassa ja painaa noin 1000 kertaa Shanghain Maglev-junan verran. Teraloopin junan tulisi liikkua noin 10 kertaa nopeammin kuin maailman nopeimmat junat ja vieläpä radalla, joka on paljon kaarevampi. Jos kahden magneettisen pinnan magneettien välinen voima on noin B2A/2μ0 (A=magneettisen pinnan pinta-ala) ja junan tiheys 1500kg/m3 vaatii pelkkä levitointi vähintään noin 0,3 Teslan kentän mikäli oletamme koko junan ja radan pohjapinnan olevan magneettiset.

Ongelma: kaarevuus
Yllä oleva pätee siis suoralle radalle. Radan kaarevuus aiheuttaa kuitenkin tätä suuremmat vaatimukset. Renkaan jokaiseen osaan kohdistuva keskipakovoima (tarkkaan ottaen keskihakuvoima) on

F = m * ω2 * R = m*v2/R

Keskipakovoimaa erilaisilla massoilla ja nopeuksilla voi arvioida tällä työkalulla.  Yksinkertaisinta on laskea kiihtyvyys g-voimina, jolloin arvo ei riipu massasta. Maan painovoima on 1g, ja ihminen kestää pyörtymättä korkeintaan noin 5 g voiman.

Patenttihakemuksessa mainittu 2500 metrin kaarevuussäde ja 1300m/s nopeus tarkoittaa noin 70g kiihtyvyyttä,  ja vaatii siis liki 3 Teslan magneettikenttän koko junan pohjapinnan alueella. Mikäli magneetit peittävät vain osan junan pohjasta vaaditaan vielä suurempi kenttä. Kestomagneetteja, jotka pystyisivät tuollaiset voimat kompensoimaan ei valitettavasti ole olemassa. Vaikka olisikin, noin suuret magneettikentät tuhoavat kestomagneetin kentän.

Tuo voima aiheuttaa jo melko kovia jännityksiä materiaaleihin. Jokaisen vaunun ja ennen muuta jokaisen vaunujen välisen nivelen on kestettävä tämän tasoinen voima. Jos yksikin nivel hajoaa, koko järjestelmä on vaarassa tuhoutua.

Suurempi ongelma on, että tämä voima kohdistuu käytännössä kohtisuoraan tunnelin seinämiä päin, eikä enää maanpintaan. Kiinteiden magneettien geometrian olisi muututtava kun nopeus kasvaa — käytännössä radan olisi kallistuttava. Toisaalta rata ei voi olla pysyvästi kallistunut, koska silloin vaunut tippuisivat pois radalta kun vauhti hidastuu.

Teraloopin esittämä konsepti siis toimii vain suoralle radalle. On syytä huomioida, että yllä oleva arvio on tehty patenttihakemuksessa kuvatulle radalle, jonka säde on 2,500 metriä. Jos säde olisi mainostusten mukaisesti vain 250 metriä, ongelma olisi kymmenen kertaa pahempi.

Mahdollinen ratkaisu ja uusi ongelma: sähkömagneetit

Mikäli mahdottomalta vaikuttavat kestomagneetit korvataan sähkömagneeteilla, voidaan noin 3 teslan kenttä luoda esimerkiksi tällaisella laitteella. Valitettavasti tämä voimakas kenttä peittää vain noin 9% laitteen koosta. Mikäli tuota osaa ei paranneta, vaaditaaan noin 3-4 kertaa voimakkaampia kenttiä kuin jo tähän asti arvioidut. Sähkömagneetti kuluttaa myös sähkötehoa noin 880W. Mikäli edellä mainittu ongelma voimakkaan kentän rajoitetusta pinta-alasta voidaan ratkaista, junan kannatteleminen vaatisi noin 500 000 sähkömagneettia ja tehonkulutus olisi yli 400 MW eli noin saman verran kuin laitteen väitetty teho. Magneetit painaisivat noin 10 kertaa enemmän kuin itse juna.

Sähkömagneetitkaan eivät pysty suoraan ratkaisemaan edellä mainittua kallistumisongelmaa, vaikka osittaisen ratkaisun voisivatkin tarjota.

Muita avoimia kysymyksiä
Joihinkin kysymyksiin emme ole pystyneet löytämään luotettavia arvioita, mutta ne tulevat varmasti tuottamaan haasteita. Laitteen hidastaminen ja kiihdyttäminen tuottavat aina lämpöä, tässä tapauksessa luultavimmin ennen muuta ohjaaviin sähkömagneetteihin. Tyypillisesti hyvässäkin järjestelmässä 10% tehosta menee hukkaan; tämä tarkoittaa, että 500 MW ottoteho tuottaisi noin 50 MW lämpötehoa. Tämä on paljon, mutta saattaa olla johdettavissa ulos. Melko väistämättä se lämmittää myös rakenteita, ja voi heikentää esimerkiksi kiinteiden magneettien stabiilisuutta. Tarkkoja arvioita on mahdoton esittää.

Hyvän tyhjiön aikaansaaminen ja ylläpitäminen näin suuressa tilassa ei helppoa. Suurin normaalissa käytössä tällä hetkellä oleva tyhjiökammio on halkaisijaltaan noin 30 metriä ja korkeudeltaan noin 37 metriä. Koska järjestelmä on käytännössä hypersoninen, pienikin määrä ilmaa tunnelissa voi olla tuhoisaa. Teraloop vaatisi siis aivan uutta teknologiaa myös riittävän tyhjiön aikaan saamiseksi.

Kysymyksiä patenttitilanteesta
Toistaiseksi vasta yksi patenttihakemus (WO2016/001478) näyttää tulleen julkiseksi. Hakemus on jätetty heinäkuussa 2014 ja tullut julkiseksi tammikuussa 2016. Koska patenttihakemukset ovat salaisia 18 kuukautta, vain ennen lokakuuta 2014 jätetyt hakemukset ovat tällä hetkellä tiedossa.

Hakemukselle on nähtävästi jo tehty kansainvälinen haku, jossa on löydetty ainakin muutama patentti jotka kattavat saman idean. Prosessi kuitenkin jatkunee, ja on mahdollista että ainakin  jonkinlainen patentti lopulta myönnetään.

Jos patentti myönnetään, mitä se kertoo Teraloopin idean toteutettavuudesta? Käytännössä ei mitään. Patenttihakemus kertoo, että tällainen valtavan suuri rengas halutaan rakentaa, ja hakijat haluavat olla ainoat maailmassa jotka saavat sellaisen rakentaa.  Tämä hakemus ei kuitenkaan kerro mitään idean toteutettavuudesta, eikä vastaa mihinkään tässä blogissa esitetyistä kysymyksistä.

Tämä ei sinällään välttämättä ole epäilyttävää. Jos hakijoilla on kasa todella innovatiivisia ideoita siitä miten tällainen rengas toteutetaan, heidän voi kannattaa ensin yrittää suojata perusidea renkaan rakentamisesta. Tämän patentin keveys ei välttämättä siis ole epäilyttävää, jos uusia patentteja on sen jälkeen haettu kiivaasti. Patenttihakemusten pitäisi kuitenkin alkaa tulla julkisiksi aivan lähikuukausina, jos kehitystyö on ollut intensiivistä.

Yhteenveto

On selvää, että startupit käyttävät erittäin optimistisia arvioita, ja jopa suoraan liioittelevat. Tätä niiltä odotetaan. Teraloopin ehdotuksen kaltaiset ristiriidat oikean maailman kanssa eivät kuitenkaan ole enää optimismia, vaan jotakin muuta. On periaatteessa mahdollista, että Teraloopilla on jotakin vuoden 2015 aikana jätettyjä patenttihakemuksia, joissa esitetään jotakin radikaalia tietoa siitä, miten rengas toteutetaan. Tämän hetken julkisilla tiedoilla näyttää kuitenkin siltä, että konsepti ei ole likimainkaan toteutettavissa edes teoriassa.

Jos yhtiön väitteet Tekes-rahoituksesta ovat tosia, olisi tarpeen kuulla millaisilla summilla valtio tätä kokeilua aikoo tukea, ja mihin tietoon päätökset perustuvat. Toivomme ilman muuta hyville startup-hankkeille menestystä. Suomen vaikea tilanne vaatii, että rahoitetaan suurella riskillä myös radikaaleja innovaatioita, joilla on suuri riski epäonnistua. Kun tutkimuksen tukirahat kuitenkin koko ajan vähenevät, ne pitäisi sentään pystyä kohdistamaan sellaisiin hankkeisiin, joilla on edes teoreettiset mahdollisuudet onnistua.

12.4.2016  Kaj Luukko, Jani-Petri Martikainen, Jakke Mäkelä, Rauli Partanen, Aki Suokko, ja Ville Tulkki.

Lisäys 12.4.2016: Teraloop on vastannut kritiikkiin. Sort of…kind of.”Teraloopin mukaan on syytä tehdä ero julkisuudessa olleiden järjestelmän konseptihahmotelmien ja sen välillä, millaiseen energianvarastointikykyyn yritys todellisuudessa pyrkii.” Koska Teraloop itse on näiden väitteiden lähde, on siis syytä tehdä ero Teraloopin väitteiden ja salassa pysyvän “todellisuuden” välillä? Luultavasti melko viisas lähtökohta.

Kesällä Lappeenrannan teknillisen korkeakoulun professori Christian Breyer tuli julkisuuteen kalvonipun kanssa, jossa hän sanoi osoittavansa kuinka pelkästään uusiutuviin nojaava energiajärjestelmä on oikein hyvä ajatus. Ymmärtääkseni työtä ei missään vaiheessa ole oikeasti julkaistu ja pidän arvelluttavana tuollaista “science by press release” tyyppistä toimintaa.
Tämä postaus tulee kamalasti myöhässä, mutta en ole aikaisemmin jaksanut/ehtiä kirjoittaa huomioitani ylös. Parempi kuitenkin myöhään kuin ei milloinkaan. (Kalvoista on muuten eri versioita. Tässä yksi ja tässä toinen. Niissä on joitain eroja. Esimerkiksi “low biomass” skenaarion PtG prosessin hyötysuhde on mystisesti muuttunut matkan varrella. Oikeissa julkaisuissa tuollaiset muutokset hoidetaan erratalla.)

Media vastaanottaa Lappeenrannan tutkimusta, joka osoittaa pelkästään uusiutuviin nojaavan energiajärjestelmän loistvaksi ideaksi.

Media vastaanottaa Lappeenrannan “tutkimuksen”, joka osoittaa pelkästään uusiutuviin nojaavan energiajärjestelmän loistavaksi ideaksi.

Poimin esityksistä kolme kalvoa, joista voi nähdä joitakin skenaarioiden peruspiirteitä. Ensin kuva asennetuista kapasiteeteista.

Asennetut kapasiteetit eri skenaarioissa. Huomaa massiivinen rooli P2G laitoksille. Niiden kapasiteetti on skenaarioissa suurempi kuin koko maan huippukulutus tällä hetkellä.

Asennetut kapasiteetit eri skenaarioissa. Huomaa massiivinen rooli PtG laitoksille. Niiden kapasiteetti on skenaarioissa suurempi kuin koko maan huippukulutus tällä hetkellä.

Sitten kuva primäärienergian tuotannosta.

Primäärienergia Breyer&Child skenaarioissa

Primäärienergia Breyer&Child skenaarioissa

Huomatkaa kuinka kaikki skenaariot nojaavat vahvasti bioenergiaan ilman, että sen ilmastovaikutuksia olisi missään otettu huomioon. Jopa “low biomass” skenaariossa bioenergian käyttö on jotakuinkin sama kuin muissakin skenaarioissa. Teollisuus käyttäisi kaikissa RES-skenaarioissa enemmän biomassaa kuin nyt. Silmämääräisesti kalvoista lukemalla kasvua olisi noin 15 TWh. Liikennepolttoaineista noin 20TWh olisi biomassasta tuotettuja. Tällä suorituksellaan Breyer ja Child ansaitsevat paikkansa innokkaiden puunpolttajien joukossa.

Sitten vielä kuva vuosittaisista investointikustannuksista. Ne kasvaisivat rajusti ja sähköautojen akut muodostuisivat keskeiseksi menoeräksi.

Oletetut investointikustannukset eri skenaarioissa.

Oletetut investointikustannukset eri skenaarioissa.

Kahlataan nyt hiukan syvemmälle skenaarioiden oletuksiin. Koska tuloksia on markkinoitu osoituksena täysin uusituviin pohjaavan energiajärjestelmän taloudellisuudesta, keskityn oletuksiin hinnoista. Breyer haluaisi, että esimerkiksi Bill Gates perehtyisi genren kirjallisuutteen. Hän antoi vihjeen sivustosta, jossa markkinoitiin mm. Mark Jacobsonin töitä osoituksena vision realistisuudesta. (Jacobsonia markkinoi muuten myös National Geographic yhdessä Shellin kanssa. I kid you not!)  Käytin siis hänen työtään vertailukohtana. Lisäksi kurkistin IPCC:n mallien oletuksiin sekä Tanskan energiaviranomaisten tietoihin,  joita Breyer ja Child käyttivät monin paikoin lähteinään.

Breyer_closeknowledgeGap 2015-12-09 at 09.11.37

Tiedon puutetta voi korjata sivulta, joka nojaa mm. Jacobson et al. tuloksiin. Kiitos vihjeestä! Löysin Excel taulukon Jacobson et al. oletuksista.

Ensimmäiseksi silmille pomppaa Breyerin olettama pääomakustannus aurinkosähkölle. Toisin kun esimerkiksi tuulivoiman kohdalla hän ei halua käyttää lähteenään tanskalaisia tai muutakaan “virallista” tahoa. Hän esittää aurinkosähkön pääomakustannukseksi vuonna 2050 300€/kW mikä on noin viidesosa nykyisestä hinnasta. Lähteenä on hänen oma ymmärtääkseni ei-vertaisarvioitu kirjoitus “Photovoltaic technology platform”:lle.  Kummallista. Miksi hän ei käytä tässä uskottavamman oloista lähdettä? Tarkistin siis muiden oletukset aurinkosähkön pääomakustannuksista. Ensin IPCC:n mallien oletuksia…

Mallien oletuksia aurinkosähkön pääomakustannuksista

Mallien oletuksia aurinkosähkön pääomakustannuksista. Ei ihan 300 €/kW.

Sitten tanskalaisilta…

LUT_theENSDK_data_forPVcosts_highlight

“Danish energy agency”:n datasivu aurinkosähköstä. Tästä lähteestä Breyer et al. poimivat monet käyttämänsä kustannusoletukset…paitsi aurinkosähkön. Ei vieläkään ihan 300 €/kW!

Hmmm. Nämä eivät ole likimainkaan Breyerin oletuksen suuntaisia. Jacobsonkin olettaa vähintään 1163$/kW vuonna 2050. Olisiko joku, jonka oletukset olisivat luultavasti erityisen ruusuisia? No, ehkä teollisuuden lobbausjärjestö SolarPowerEurope, joka on kirjoittanut Greenpeacen Energy [R]evolution raporttia? Selaan sivulle 68 ja löydän heidän arvauksensa vuodelle 2050…658 €/kW! Ts. Breyer ja Child olettavat aurinkosähkön pääomakustannuksen rajusti alhaisemmaksi kuin kukaan muu ja he tekevät tämän ilman, että edes keskustelisivat tähän oletukseen johtaneista syistä.

Photo 8.12.2015 20.27.17

Kokoan seuraavaan kuvaan eri tahojen arvaukset pääomakustannuksista.

LUT_PV_cost assumptions

Vertailu eri lähteiden olettamista aurinkosähkön pääomakustannuksista. Edes teollisuuden lobbausjärjestöt eivät lupaa yhtä alhaista kustannusta kuin Breyer et al.

Jos oikein ymmärsin, Breyer päätyy näihin lukuihin soveltamalla oppimiskäyriä siihen saakka kunnes pääomakustannus on toivottu ilman minkäänlaista harkintaa siitä mihin asti ekstrapolointia on järkevää tehdä. Toisin sanoen jos oletamme, että kapasiteetin tuplaus laskee hintoja noin 20% olisi kapasiteetin kasvettava noin tekijällä 100, jotta pääsisimme Breyerin arvaukseen. Tällöin maailman aurinkosähkökapasiteetti olisi moninkerraisesti keskikulutuksen verran, kun taas Saksassa aurinkosähkön asennukset romahtivat, kun aurinkosähkökapasiteetti oli vain noin puolet Saksan keskimääräisestä kulutuksesta. Miten Breyer perustelee integrointihaasteiden, materiaalirajoitteiden tai esim. tuotantokapasiteetin rajoitteiden sivuuttamisen, jää mysteeriksi. Oppimiskäyrien ekstrapoloiminen loputtomiin on hölmöä. Jossain vaiheessa tekniikka kypsyy ja oppimiskäyrät muuttuvat. Ei ole viisasta kohdella marginaalista teknologiaa samalla tavalla kuin merkittävää. Ensimmäisen kohdalla materiaali yms. rajoitteet eivät ole relevantteja, kun taas jälkimmäisen kohdalla usein ovat. Jos kaipaamme tästä varoittavaa 
esimerkkiä, voimme katsoa vaikkapa tuulivoiman oppimiskäyrää. Kehitys seurasi oppimiskäyrää suunnilleen siihen asti kunnes kapasiteetti oli n. 10 GW. Sen jälkeen oppimista on vaikeaa nähdä. Melkein koko maailman tuulivoimakapasiteetti on asennettu tuossa kuvaajan alueessa missä oppimisefektejä ei näe. Miksi vastaava ei voisi tapahtua myös aurinkosähkön kohdalla?

IRENA:n sivulta poimittu tuulivoiman oppimiskäyrä. Huomaa, että suurin osa kapasiteetista on asennettu ilman mitään havaittavia oppimisefektejä.

IRENA:n sivulta poimittu tuulivoiman oppimiskäyrä. Huomaa, että suurin osa kapasiteetista on asennettu ilman mitään havaittavia oppimisefektejä.

Arvauksia on tietenkin koko kalvosetti täynnä. Esimerkiksi ydinvoiman kohdalla Breyer olettaa pääomakustannuksen 6500€/kW. Tämä on “off-scale” alla olevasta kuvasta mihin kokosin IPCC:n käyttämien mallien oletuksia. Breyer et al. päätyvät tuohon lukuun olettamalla Olkiluoto 3:n tyypilliseksi projektiksi ja sitten lisäämällä vielä kustannuksia sen päälle. Tämä on kirsikanpoimintaa. Käyttökustannukseksi he olettavat 3.5% pääomakustannuksista. Lähde on asiallinen eli IEA:n World energy outlook 2014, mutta koska Breyer et al. päättivät poimia raportista vain tuon luvun konteksti taitaapi olla väärä. Minulla ei nyt ole pääsyä tuohon samaan julkaisuun, mutta toisaalla IEA kertoo olettavansa USA:n ja Euroopan hintatason lähestyvän Korean hintatasoa samalla, kun Aasian hintataso pysyy vakiona. Korean hintatasoksi on taas annettu n. 3700 $/kW eli 1.1 $/€ vaihtokurssilla IEA olettaa ydinvoiman pääomakustannukseksi noin puolet Breyerin olettamasta. Breyerin käyttämä käyttökustannus on siis 2-3 kertaa liian suuri. (Tämän voi toki myös todeta lukemalla esimerkiksi Lappeenrannassa kirjoitettuja tutkimusraportteja.)

Otos mallien oletuksista ydinvoiman pääomakustannuksista

Otos mallien oletuksista ydinvoiman pääomakustannuksista. Breyer et al. olettavat 6500 €/kW.

Fossiilisten polttoaineiden hinnat Breyer puolestaa oletettaa jatkuvasti nouseviksi ja niin, että muutaman vuoden päästä esimerkiksi öljynhinta on yli kaksinkertainen verrattuna nykyhintaan. Vuonna 2050 hintojen pitäisi olla yli kolminkertaiset nykytasoon verrattuna. Minusta on jännittävää huomata kuinka kaikki oletukset asioista mistä Breyer et al. eivät pidä ovat niille ikäviä, kun taas kaikki oletukset kivoista asioista ovat niille suotuisia. Aivan kuin joku uskoisi, että mailmankaikkeus on heidän puolellaan.

Päätin summailla sähköntuotannon pääomakustannuksia yhteen saadakseni tuntumaa siihen kuinka suuria kustannuksia arvausten virheet voivat aiheuttaa. Laskin siis vain yhteen sähköntuotannon (mukaan lukien PtG laitokset) pääomakustannukset. Oletin ydinvoiman pääomakustannukseksi 4000€/kW. Tämän alle voidaan päästä, kun rakennamme paljon ja annamme oppimiskäyrien vaikuttaa (ks. yllä IEA:n oletus), mutta pidetään nyt kuitenkin jalat maassa.  Seuraava kuva näyttää kahdessa ensimmäisessä palkissa Breyerin arvaukset heidän “basic 100% RE” skenaarion pääomakustannuksista perustuen hintoihin vuonna 2050 ja 2020. Kolmas vihreä palkki perustuu nykyisiin hintoihin. Jos hinnat eivät putoa niin kuin Breyer olettaa, hänen täysin uusiutuviin perustuvien järjestelmien pääomakustannuksissa on helposti yli 100 miljardin ylimääräinen kustannus. Eikö 100 miljardia ole aika paljon? Kuka tuon riskin kantaa? Millä korolla tuo pitäisi diskontata? Millä hinnalla pankit myisivät Suomelle suojan tuota riskiä vastaan? Miksi Breyer ei huomauta sen olemassaolosta?

Kuvassa viimeiset kolme palkkia näyttävät muuten saman “Business As Usual” skenaariolle. Kuten näkyy niissä hintariski on merkittävästi alhaisempi. Breyerin oletukset pääomakustannuksista ovat melko hyvin linjassa sen kanssa mitä ne ovat nykyäänkin.

Hokkus pokkus. 100 miljardia sinne tai tänne.

Hokkus pokkus. 100 miljardia sinne tai tänne.

Päätin vielä tarkistaa hinnat parissa vaihtoehtoisessa skenaariossa. Ensinnäkin skenaario missä korvaan “low bio 100% RE” skenaarion tuuli- ja aurinkovoimalat lähinnä ydinvoimalla. Pidän kuitenkin saman verran vesivoimaa kuin “low bio” skenaariossa oli. Ydinvoima kapasiteetti on sellainen, että sähköntuotanto on sama kuin Breyerin skenaariossa ja ylijäämä tuotanto syötetään power to gas laitoksiin (minimi sähkön kulutukseksi oletin n. 6 GWe). Koska ydinvoimaloiden kapasiteettikerroin on korkeampi, PtG laitosten kapasiteetti voi olla paljon alhaisempi. Arvioin pääomakustannusten olevan n. 90 miljardia alhaisemmat kuin Breyerin skenaariossa. Jos oletamme saman hyötysuhteen PtG prosessille kuin Breyer (ja mysteerilähteen hiilidioksidille), tämä skenaario muuten tuottaisi kaasua suunnilleen sen verran, että energiasisältö on liki sama kuin liikenteessä kuluva energia nykyään. Koska kaasua ei tarvita sähköntuotannon heilahtelun paikkaamiseen, se voisi potentiaalisesti dekarbonisoida myös liikenteen, poistaen tarpeen biopolttoaineille (ja niiden aiheuttamalle ympäristövahingolle) sekä sähköautojen akuille. Ydinvoimalat toki tuottaisivat myös valtavasti lämpöä, jonka turvin myös lämmitystä voisi dekarbonisoida (tai lämpöä voisi käyttää hiilidioksidin hankkimiseen).

Kuvan viimeinen palkki näyttää vastaavan skenaarion, mutta siinä ydinvoimaloiden kapasiteetti valittiin sellaiseksi, että ne riittävät kattamaan maksimikulutuksen. Ylijäämä syötettiin sitten taas PtG laitoksiin. Nyt kaasua tuotetaan noin puolet vähemmän, mutta pääomakustannukset ovat tietenkin alhaisempia. Säästöä Breyerin visioon n. 144 miljardia.

Pääomakustannukset kolmessa eri vaihtoehdossa. Keskimmäinen nojaa ydinvoimaan (+vesivoima) ja tuottaa sillä saman sähkömäärän kuin Breyer et al. low bio 100RES skenaario. Viimeinen nojaa myös ydinvoimaan, mutta kapasiteetti on "vain" riittävä kattamaan huippukulutus. Molemmissa ylijäämäsähkö syötetään P2G prosessiin samoin kuin Breyer et al. skenaariossa.

Pääomakustannukset kolmessa eri vaihtoehdossa. Keskimmäinen nojaa ydinvoimaan (+vesivoima) ja tuottaa sillä saman sähkömäärän kuin Breyer et al. low bio 100% RE skenaario. Viimeinen nojaa myös ydinvoimaan, mutta kapasiteetti on “vain” riittävä kattamaan huippukulutus. Molemmissa ylijäämäsähkö syötetään PtG prosessiin samoin kuin Breyer et al. skenaariossa.

Olen aikaisemmin leikkinyt ajatuksella synteettisistä polttoaineista. Viimeisessä kuvassa näytän kapasiteetin käyttöasteen PtG laitoksille eri skenaarioissa. Kuten on ilmeistä ydinvoimapohjaisissa skenaarioissa käyttöaste on paljon korkeampi. Jos käytän Breyerin kustannuslukuja (eletään vaarallisesti) vuodelle 2020, tämä näyttää tarkoittavan, että synteettisen kaasun hinta enemmän ydinvoimaa sisältävässa skenaariossa on yli 40% alhaisempi kuin Breyerillä. Just sayin.

LUT_utilizationrate

PtG laitosten käyttöasteet kolmessa vaihtoehdossa.

Breyer ja Child toteavat esityksessään:
“Results suggest that a 100% RE scenario is a highly competitive cost solution compared to other test scenarios with increasing shares of nuclear power and a Business As Usual (BAU) scenario”. Perustuen ylläolevaan, minusta he eivät osoittaneet tätä. Teemasta enemmän kiinnostuneiden kannattaa muuten tulla mukaan Suomen ekomodernistien Facebook-ryhmään.

Lisäys: Tämä ei siis ollut missään nimessä perinpohjainen kommentaari kaikesta minkä uskon olevan pielessä Lappeenrannan skenaarioissa. Niissä tuulisena kesäpäivänä tuotanto olisi paljon suurempi kuin mitä nykyinen verkko voi siirtää, mutta keskustelu verkkokustannuksista yms. puuttui täysin. Synteettisen kaasun tuotanto on myös esitetty ympäripyöreästi. Eräässä paperissa Breyer et al. väittävät CO2 tonnin hinnan ilmasta kerättynä olevan alle kymmenesosa siitä mitä asiaa tutkineet tutkijat sanovat. Lähteenä oli jonkun yrityksen verkkosivut ja keskustelut yrityksen edustajien kanssa. Olisi myös kiinnostavaa tarkistaa vaadittava investointitahti vuodessa. Koska minun esittämissäni skenaarioissa infrastruktuuri on pidempi ikäistä, tällä olisi ikävä taipumus suosia niitä.

Lion Hirth (Potsdam Institute for Climate Impact Research) on kirjoittanut kiinnostavan artikkelin (pdf tässä), jossa hän tutkii sitä millainen tuuli- ja aurinkovoiman määrä optimoi hyvinvoinnin (ekonomistien käyttämässä merkityksessä). Hirth2Hän mallintaa tätä käyttäen todellisia säätietoja, kulutusprofiileja yms. GAMS pohjaisella työkalulla “Electricity Market Model EMMA”, joka on itse asiassa saatavilla Creative Commons lisenssillä. Malli vaikuttaa myös aika hyvin dokumentoidulta ja sieltä on helppo käydä tarkistamassa esimerkiksi oletetut parametrit eri teknologioiden hinnoille. En huomannut, että sinne olisi kätketty mitään kummallista. Hirth käytti mallissaan 7% korkoa investoinneille. Malli minimoi kokonaiskustannukset annettujen teknisten reunaehtojen puitteissa. Hirth näyttää tietävän mitä tekee ja mallinnus on paljon perinpohjaisempaa kuin mihin minun kaltaiseni harrastelija pystyisi.

Kun hän olettaa, että tuulivoiman hinta putoaa 30% nykyisestä tasolle 50€/MWh, optimi tuulivoiman osuus luoteis-Euroopassa (sisältää Saksan lisäksi myös esim. Ruotsin ja Norjan) olisi noin 20%. Jos kustannukset ovat nykyisenlaiset, optimi olisi n. 2%. Aurinkovoiman kohdalla tilanne on vielä masentavampi. Vaikka hän olettaisi kustannusten putoavan 60% tasolle 70€/MWh, optimi aurinkovoiman osuus on noin nolla prosenttia. Näitä osuuksia rajoittaa nimenomaan tuotannon satunnaisuus ja osuudet nousevat vain hiukan esimerkiksi lisäämällä vesivoimavarastointia tai laajentamalla verkkoja. Tämä tulos siis tuskin muuttuu olennaisesti teknisen kehityksen seurauksena. (Tuulivoiman varastoinnista hänellä on myös kiinnostava pointti. Varastointi altaisiin toimii nähtävästi yleensä niin, että altaat pumpataan täyteen noin 8 tunnissa, kun taas tuulivoiman vaihtelevuuden kompensointi vaatii pidempia ajanjaksoja ja varastointiteknologiaa, jossa energia/teho suhde on suurempi. Siitä vain miettimään missä sellainen varastointiteknologia on.)

Kiinnostavasti hän myös huomaa, että hiilidioksimaksujen korottaminen kasvattaa vaihtelevien uusiutuvien osuutta korkeintaan vain n. 25% tasolle. Jos maksut nousevat korkeammalle kuin noin 40 €/tCO2, tuulivoiman osuus laskee. Tämä siksi, koska tuon tason yläpuolella käynnistyvät investoinnit ydinvoimaan ja hiilentalteenottoon.

Kuva 1: Optimiosuus tuuli- ja aurinkovoimalle hiilidioksidimaksun funktiona. (Hirth 2015 Energy Journal 36, 127-162.)

Kuva 1: Optimiosuus tuuli- ja aurinkovoimalle hiilidioksidimaksun funktiona. (Hirth 2015 Energy Journal 36, 127-162.)

Jos ydinvoima kielletään, kustannukset ja päästöt nousevat rajusti siitä mitä ne olisivat muuten olleet. Nämä ovat siis teknofetissien ulkoisia kustannuksia. Hirthin sanoin….

However, the unavailability of nuclear and CCS comes at the price of increased emissions and welfare losses: CO2 emissions increase by 100-
200% (depending on VRE cost reductions), the electricity price increases by 15-35%, and total system costs by 13-25%. In absolute terms, welfare is reduced by 15-30 €bn per year, which would increase if the assumption of price-inelastic demand was relaxed

Ainoa tapa kasvattaa tuulivoiman osuutta edes 40% tasolle oli asettaa yli 100 €/tCO2 maksu päästöille, kieltää ydinvoima ja olettaa tuulivoimalle merkittävästi nykyistä alhaisempi hinta. On tietenkin sanomattakin selvää, että myös 40% osuus on koomisen riittämätön ilmastotavoitteita silmälläpitäen.

On myös kiinnostavaa huomata mitä Hirth ei tehnyt. Hän keskittyi nimenomaan tuulivoiman osuuden kasvattamiseen eikä esimerkiksi päästöjen minimointiin. Hän ei siis kertonut mikä on optimaalinen sähköntuotantotapa, kun tavoitteena on minimoida kustannukset sillä reunaehdolla, että päästötaso on riittävän alhainen. (Tuolla EMMA mallilla tämän voisi varmaan tehdä helposti, mutta valitettavasti minulla ei ole GAMS lisenssiä. Tämä projekti jää siis toistaiseksi pilkkeeksi silmäkulmaan.) Koska haittamaksun nosto ajoi investoinnit ydinvoimaan ja hiilentalteenottoon, luen kuitenkin rivien välistä tähän vastauksen, joka ei ole saksalaisessa keskusteluympäristössä korrekti. Kuten olen itsekin moneen kertaan arvioinut (esim. täällä ja täällä), jos vaadimme rajuja päästövähennyksiä “heavy lifting” perustuu suurella todennäköisyydellä ydinvoimaan. Ennen kuin tämä itsestäänselvyys ymmärretään voimme nauttia nykyisestä tragikoomisesta ilmastopolitiikasta.

WWF on julkaissut uuden raportin Suomen metsien hakkuista ja kuinka metsien monimuotoisuuden suojeleminen voitaisiin nivoa yhteen niiden taloudellisen hyväksikäytön kanssa. Raportin johtopäätöksenä on, että metsistä voidaan korjata hiukan nykyistä enemmän puuta mikäli samalla suojelualueita kasvatetaan, FSC-sertifiointia laajennetaan ja kantojen maasta repiminen lopetetaan. Energiapuun ekologistaloudellinen potentiaali voisi tämän jälkeen olla 3 miljoonaa kuutiota nykyistä suurempi. Tämä tarkoittaa primäärienergiassa noin 6 TWh, kun Suomen energian kulutus on n. 400 TWh. Ottaen huomioon kuinka vahvasti yksi jos toinen taho nojaa bioenergian käytön lisäämiseen omissa ilmasto- ja energiasuunnitelmissaan, tämän pitäisi soittaa hälytyskelloja.

Miten WWF:n arvio suhtautuu joihinkin esillä olleisiin vaihtoehtoihin? Näytän ensimmäisessä kuvassa summittaisen vertailun vaaditusta biomassan lisäyksestä eri visioissa.

  1. WWF viittaa WWF:n tuoreeseen raporttiin. (Tilattu Gaia Consulting Oy:ltä)
  2. Ilmastostrategia  viittaa kansalliseen energia- ja ilmastostrategiaan vuosimallia 2013
  3. Vihreät A perustuu Vihreiden vaihtoehtoon Fennovoimalle
  4. Metla viittaa Metlan arvioon taloudellisesti kestävästä hakkuupotentiaalista (poimin luvut WWF:n raportista)
  5. Greenpeace A perustuu Greenpeacen “Energiavallankumousmalliin A” (vuoteen 2030 asti)
  6. P. Lund 2007 viittaa artikkeliin, joka on Suomen energiapolitiikkaa kritisoineen professorijoukon taustamateriaalia.
  7. Vihreät B perustuu Vihreiden Ilmasto- ja energiaohjelmaan. (Lisäsin siihen myös palkin flopiksi osoittautuneeseen ruokohelpeen, koska ilmeisesti sen jättämä aukko suunnitelmassa pitää paikata jollain.)
BioTavoitteet

Kuva 1: Bioenergiasuunnitelmien vaatima biomassan määrä (miljoonaa kuutiota) nykyisen kulutuksen päälle. Ensimmäisenä WWF:n arvioima ekologistaloudellinen potentiaali (n. 3 miljoonaa kuutiota lisää). Palkeissa on epävarmuuttaa mm. sen osalta millainen puumäärä vaaditaan puusta tehtävän biokaasun tuotantoon. (Arvasin, että ilmastostrategian visioima n. 3TWh biokaasua vaatii n. 3 miljoonaa kuutiota puuta.)

Minä näen kuvassa tiettyjä ongelmia. Kaikkien esitettyjen vaihtoehtojen vaatima puumäärä on rajusti korkeampi kuin se mitä WWF arvioi ekologisin perustein kestäväksi. Laajamittaisen puunpolton järkevyys ilmastonmuutoksen torjunnassa taas on ollut kyseenalaista jo pitkään. Kansallisessa strategiassamme tätä teemaa käsitellään muuten seuraavasti:

41)Bioenergiaa koskevien kestävyyskriteerien valmistelussa pyritään varmistamaan, että kriteerit eivät muodostu sellaisiksi, että ne vaarantaisivat tai
estäisivät kestävien kotimaisten biomassojen käytön energiantuotannossa ja siihen liittyvissä tukitoimissa.

42) Lisäksi pyritään varmistamaan, että kestävän biomassan poltto on päästölaskennassa myös jatkossa hiilineutraalia.

Itse tulkitsen tämän seuraavasti. Kestävyyskriteerit rakennetaan sellaisiksi, että puunkäyttöä lisätään riippumatta siitä onko se ekologisesti tai ilmaston kannalta järkevää. Päästölaskennassa strategiana on taas ylläpitää denialismia bioenergian ilmastovaikutuksista. Olen ylpeä, kun maallani on näin hieno strategia #sarkasmia.

Laitan tähän loppuun vielä summittaisen arvion siitä kuinka vahvasti erilaiset esillä olleet vaihtoehdot nojaavat bioenergiaan. Kuten on ilmeistä, bioenergiapotentiaalin rajoittaminen WWF:n esittämälle tasolle romuttaa nämä visiot. (Greenpeacen skenaario nojaa suhteessa vahvemmin tuulivoimaan. Heidän ideanaan on, että melkein kaikki Suomen sähkö tuotetaan tuulivoimalla. Keskustelua tämän tuotannon integrointihaasteista tai -kustannuksista ei yllättävää kyllä heidän “vallankumouksestaan” löydy.)

BioPaino

Kuva 2: Summittainen paino mikä eri vaihtoehdoissa bioenergialle annetaan energian tuotantopäässä. Varoitus: tämä on summittainen arvio, jossa osassa on verrattu tuotettavaa sähkön määrää (TWh) ja osassa primäärienergiaa. Joissain lämpöpumput taas laskettiin energiatehokkuuden alle. Luvut eivät siis ole keskenään vertailukelpoisia ja antavat lähinnä indikaation siitä kuinka pahasti visio lässähtää, jos bioenergialle aletaan asettamaan ekologisia tai ilmastoon liittyviä reunaehtoja.

Päivitetty 23.2.2015: Tässä tuore Robert Wilsonin blogikirjoitus biomassan rooolista EU:ssa. Suurin osa EU:n uusiutuvasta energiasta on juuri biomassan polttoa ja tästä suurin osa on puuta. Kaikesta tuuli- ja aurinkovoimahypetyksstä huolimatta biomassan osuus ei edes ole laskenut viimeisen kymmenen vuoden aikana.

Päivitetty 12.3.2015: Kuvien P. Lund 2007 palkeissa on häikkää. Tuollaisena niihin on summattu yhteen paperin taulukossa 2 kerrotut primäärienergia potentiaalit eri biomassan lähteille. Sähköntuotannon osalta siellä kuitenkin tarkoitettiin, että kokonaispotentiaalista koottaisiin 10TWh lisäsähköä vuoteen 2020 mennessä. Tämä tarkoittaa, että etenkin kuvassa 2 P. Lund 2007:ssä punainen palkki on liian dominoiva ja palkin korkeus pitäisi laskea 18 TWh tasolle. Alla tältä osin (summittaisesti) korjatut kuvat.

Corrected1Corrected2

Twitterissä “Energiewende Germany” linkitti jokin aika sitten (tähän) tutkimukseen, jossa tutkittiin saksalaisia energiaosuuskuntia. Olen aikaisemmin kritisoinut puheita energiademokratiasta, paikallisesta lähienergiasta yms. taipumuksesta kätkeä harjoitetun politiikan raju regressiivisyys. Energiapolitiikan tukiaiset tuppaavat valuvan hyvin vahvasti rikkaammalle väestönosalle. (Ks. myös tämä.) Toisaalta jos “tavalliset” saksalaiset muodostavat osuuskunnan, ehkä he voivat antaa yhdessä merkittävänkin kontribuution Saksan energiapolitiikkaan?revolution_nowhere

Tuo tutkimus ei näytä tukevan tällaista väitettä. Kaikkia kaipaamiani lukuja ei siellä anneta tarkasti, mutta joitain arvioita on helppoa tehdä. Ensinnäkin kuinka monta saksalaista näihin osuuskuntiin vuosittain liittyy? Tutkimuksessa annetaan perustettujen osuuskuntien määrä ja arvio näiden kokojakaumasta. Tästä summailemalla voin arvioida, että osuuskuntiin liittyy vuosittain ehkä korkeintaan 20000 saksalaista. Jos tätä on harrastettu n. 10 vuotta, voimme arvioida että osuuskuntiin kuuluu ehkä korkeintaan pari sataa tuhatta ihmistä. Tämä on n. 0.25% saksalaisista.  (Itä-Saksan kommunistipuolueeseen kuului muuten yli 10% itä-saksalaisista.)

No ehkä nämä osuuskuntalaiset ainakin edustavat tyypillisiä saksalaisia?

Regarding the personal characteristics of energy cooperative members, we found that an overwhelming majority of energy cooperative members are men, representing 80%. In terms of age,as shown in Table 2, the majority of surveyed members are older than 35, with 46.8% being 35 to 55, another 41.54% being older than 55, and only 11.66% younger than 35. Further remarkable trends can be found concerning educational backgrounds and income structures of involved individuals. The majority of energy cooperative members are university graduates(51%). Consequently, higher income groups are overrepresented…

Eli jos pidämme vanhaa hyvätuloista miestä tyypillisenä, niin sitten energiaosuuskuntalaiset ovat oikein edustavia.

Entä energiaosuuskuntien kontribuutio “energiewendeen”? Taaskaan en löydä tarkkoja lukuja, mutta tarkastelemalla uusien osuuskuntien määriä ja niiden osakepääomia voin arvioida, että investointeja virtaa niihin ehkä pari sataa miljoonaa vuodessa. Tämä tarkoittaa, että osuuskuntien osuus kaikesta vuosittain asennettavasta aurinkosähköstä on ollut jossain 10% pienemmällä puolella. Joskus olisi kiva löytää nämä luvut tarkemmin, mutta olen yllättynyt mikäli niiden tarkentuminen muuttaa mitään olennaista.

Kuva 1: Rahaa se vain on

Kuva 1: Rahaa se vain on

Sanoin palaavani vielä tähän teemaan…tervetuloa siis takaisin! Aikaisemmin huomautin ECOFYS:n urheasta, mutta epäonnistuneesta yrityksestä paisutella ydinvoiman ulkoisia kustannuksia. Mutta raportissa on muutakin hauskaa. Ensinnäkin mitä siellä tarkoitetaan tukiaisilla? Tämä on laaja teema ja eri tukikategorioita on monia. Ydinvoiman kohdalla sitä kuitenkin dominoi yksi kategoria. Argumentti on, että infrastruktuuria ei olisi rakennettu ilman valtion osallisuutta ja näin riskiä olisi siirretty valtiolle. Sitten lasketaan (diskontattu) kustannus käyttäen arvausta markkinoiden vaatimasta korosta yksityiselle toimijalle ja kustannus käyttäen alhaisempaa korkoa, jonka valtion mukanaolo mahdollistaa. Tukiainen olisi sitten näiden erotus. Tällä tavalla ECOFYS laskee ydinvoimalle noin 200 miljardin euron historiallisen tukiaisen. (Tällä hetkellä uusiutuvien tuet ovat heidän mukaansa 41 miljardia vuodessa eli tuo ydinvoiman historiallinen tukiainen on ylitetty parissa vuodessa. Eiköhän lasku pian uusita niin, että ydinvoiman historiallisia kustannuksia voidaan kasvattaa. Käynnistän kellon nyt…)

Huomatkaa kuitenkin arvovalinta tämän laskun perusteissa. Lähtökohta on, että ensinnäkin kaikkiin projekteihin on olemassa yksityinen (korkeampi) valtioiden politiikasta irrallinen korko. Lisäksi oletetaan, että tämä korko tiedetään ja että se antaa “oikean” kustannuksen. Nämä oletukset voi joko hyväksyä tai olla hyväksymättä, mutta ne olisi yhtä kaikki hyvä tunnistaa. Minusta koko lasku on hyvin kyseenalainen. Voihan joku sanoa, että esimerkiksi julkinen terveydenhuolto on hurjasti tuettua siksi, koska se rahoitetaan (kiitos valtion mukanaolon) alhaisemmin rahoituskustannuksin, mutta vaihtoehtoisesti voidaan todeta, että kansantalous kokonaisuudessaan säästää merkittävästi tämän seurauksena.

No, ehkä et jaa minun kantaani (hiukan horjuva sellainen) tässä asiassa ja pidät tukiaislaskua vakuuttavana. Minusta on kuitenkin kiinnostavaa huomata kuinka ECOFYS sitten laskee ulkoiset kustannukset. Energian- tai mineraalien hupenemiselle lasketaan kustannus sen perusteella, että resurssien omistajat käyttäisivät korkeaa diskonttokorkoa joka kannustaa heitä kuluttamaan resursseja nopeammin kuin mikä olisi sosiaalisesti optimaalista. Kun lasketaan ulkoisia kustannuksia, lähtökohta on siis päinvastainen kuin historiallisia tukiaisia laskettaessa. Nyt “markkinoiden” korko on väärä (ja liian korkea) ja joku muu (ulkoisen kustannuksen laskija) tietää mikä oikean koron tulisi olla.

Tämän hetkisiä kustannuksia taas lasketaan erilaisilla korkoilla riippuen teknologiasta. Esimerkiksi ydinvoiman kustannusta lasketaan käyttäen 9-11% korkoa, kun taas tuulivoimalle käytetään 5-7% korkoa. Mutta mistä tämä korkoero tulee? Joku tuulivoimalaa rakentava voi varmastikin saada rahoitusta halvemmalla, mutta tämä on seurausta siitä, että valtio on siirtänyt projektin riskiä muualle takaamalla asiakkaat ja tuotteen hinnan syöttötariffeilla. ECOFYS:n itsensä mukaan tämän prosessin tulisi olla tukiainen, koska todellisen koron tulisi olla korko ilman näitä poliittisia tukirakenteita. Nämä korot hyväksytään sen sijaan mukisematta “oikeina” eikä niiden kustannuksia lasketa sen enempää tukiaisiksi esimerkiksi tuulivoimalle kuin negatiiviseksi tukiaiseksi vaikkapa ydinvoimalle. On siis tärkeää huomata, että on kustannuseriä, jotka ovat oikeasti riippuvia teknologiasta ja sitten on näitä korkoon  liittyviä “kustannuksia”, jotka riippuvat rajusti siitä poliittisesta ympäristöstä missä teknologiaa sovelletaan.

Kuva 2: Mikä ulkoinen kustannus?

Ulkoisiin kustannuksiin taas lasketaan mukaan mitä lasketaan ja jä jätetään muut ulkopuolelle. Esimerkiksi bioenergian kohdalla mukana on kategoria maanviljelysmaan käytöstä (0.1 €/neliömetri vuodessa). Tässä kustannus muodostuu siitä, että mikäli bioenergiaa ei tuotettaisi maan voitaisiin antaa hakeutua luonnonvaraiseen tilaan missä sen biodiversiteetti olisi korkeampi. Sen sijaan ulkoisissa kustannuksissa ei ole mitään kategoriaa metsien käytölle. Mikäli metsät muutetaan puupelloiksi minkäänlaisia biodiversiteetti ongelmia ei nähtävästi ECOFYS:n mukaan ole (kunhan emme hakkaa metsiä täysin nurin). I beg to differ. ECOFYS rationalisoi tätä seuraavasti:

We assumed wood pellets are made of residue wood and did not allocate agricultural land  occupation to the production of this wood (i.e. all agricultural land occupation is allocated to  the main wood product). The agricultural land occupation impact of the growing of the wood  used for wood pellet production (used in dedicated biomass plant, biomass CHP and wood pellet boiler) was excluded. While this may not reflect all biomass use in the EU, we  understand it reflects the majority sources in 2012

Toisin sanoen tämän bioenergian ennakkoehtona on laaja metsäteollisuus, joka tuottaa nämä jätevirrat. Tähän metsäteollisuuteen liittyy (tietenkin) valtava ulkoinen kustannus, mutta sitä ei lasketa millään tavalla bioenergian kustannukseksi. Tämä on hiukan vastaavaa kuin jonkun yrityksen yritys esiintyä vastuullisena ja eettisenä alentamalla pääkonttorin hiilijalanjälkeä, luomalla sinne progressiiviset tasa-arvo-, diversiteetti- yms. politiikat…samalla kun koko yrityksen toimitusketju on muuten per….stä.

Entä systeemitason kustannukset? Vaihtelevien uusiutuvien aiheuttamat kustannukset kasvavat niiden osuuden noustessa ja ovat korkeilla penetraatioilla merkittävästi suurempia kuin vaihtoehdoilla (lue lisää vaikka täältä ja täältä). ECOFYS mainitsee tämän ja ei kiistä näiden kustannusten olemassaoloa. He eivät kuitenkaan laske näitä kustannuksia sen enempää vaihtelevien uusiutuvien hintaan, tukiaisiin kuin ulkoisiin kustannuksiinkaan. He muodostivat näistä jonkin kuvitteellisen kategorian raportin ulkopuolelle.

ECOFYS:n mukaan julkista tukea maksetaan yhteensä 122 miljardia. Tästä uusiutuvien tuen jälkeen merkittävin erä on “kulutuksen tukeminen” (energy demand support) 27 miljardilla. Tästä melkein kaikki on seurausta siitä, että kaikkia fossiilisten polttoaineiden käyttötapoja ei veroteta korkeimmalla veroprosentilla. Tämä taitaa olla se tapa millä myös OECD määrittelee tukiaisen, mutta minusta tässä pitäisi olla tarkempi, koska maksajan kannalta kyse on hyvin eri  asiasta

Kuva 1: Logiikkaa, kiitos...

Kuva 3: Logiikkaa, kiitos…

kuin suorissa tulonsiirroissa. Jos valtio ja kunnat eivät verota minun tulojani 50% mukaan, saanko minä tukiaisia? Jos käyttäisimme ylläolevaa määritelmää energiatukiaisista, niin kyllä saisin. Koska joku muu maksaa korkeampaa prosenttia ja teoriassa minunkin prosenttini voisi olla korkeampi, niin saan tukiaisia. Kiitos valtio ja Espoon kaupunki!

Kun tukiainen määritellään maksimiveroprosentin ja toteutuneen veroprosentin erona (kuten ECOFYS tekee), suurin osa varmastikin ajattelee tukiaisten poistamisella verojen korotusta niin, että kaikki maksavat korkeamman prosentin. Toisaalta määritelmässä on kaksi termiä ja tukiainen voidaan aivan yhtä hyvin poistaa laskemalla kaikkien verot sinne alimmalle prosentille. Kuvitteleeko joku, että fossiilisten kilpailukyky katoaisi, jos poistaisimme tukiaiset näin? Suomessa valtio saa (lähinnä) fossiilisia verottamalla yli 4 miljardin verotulot. Tätä ei kuitenkaan lasketa negatiiviseksi tukiaiseksi öljylle yms. tai tukiaiseksi vaihtoehdoille. Jos haaveilemme, että öljynkäyttö loppuu, valtion budjettiin ilmestyy miljardien reikä. Jos öljy korvataan vaihtoehdolla jota tuetaan esimerkiksi tasolla 5 senttiä/kWh, kustannuksia tulee lisää noin 3 miljardia. Valtion kannalta siirtymä siis aiheuttaisi helposti noin opetusministeriön kokoisen reiän budjettiin, mutta tukiaisia laskettaessa mitään muutosta ei muka tapahtunut. Tapa millä tämä tukiainen lasketaan on siis hyvin harhaanjohtava etenkin, kun sitä huoletta verrataan suorien tulonsiirtoihin kustannuksiin.

Raportin kokonaiskuva ei siis ole mielestäni johdonmukainen. ECOFYS:n näkemys esimerkiksi siitä mikä oikean koron tulisi olla muuttuu siirryttäessä kategoriasta toiseen, mutta se ei tee niin satunnaisesti vaan aina tavalla joka antaa mahdollisuuden lisätä kustannuksia tai tukiaisia fossiilisille ja ydinvoimalle samalla, kun uusiutuviin liittyviä menoeriä lakaistaan maton alle. Tämä palvelee propagandatarkoituksia, mutta on vähemmän rakentavaa mikäli toiveena on perusteltu kuva energiasektorin kustannuksista, tukiaisista ja ulkoisista kustannuksista. (On siitä huolimatta taas huomautettava, että tästä kiemurtelusta huolimatta he joka tapauksessa päätyvät toteamaan, että ydinvoiman tukiaiset ja ulkoiset kustannukset ovat alhaisia.)

Lisäys 21.10.2014: Kun muuten ydinvoiman tukiaisten yhteydessä ECOFYS puhuu riskien siirrosta, niin mitä riskiä he mahtavat tarkoittaa? Kyse ei voi olla kustannuksista, jotka liittyvät ulkoisiin kustannuksiin, koska ne ECOFYS laski pieniksi ja toisekseen niiden piti olla kustannuksia joita ei oltu laskettu muuten mukaan. Kyse on suurelta osin poliittisesta riskistä. Pelosta siitä, että toimintaympäristö muuttuu politiikan seurauksena sijoitukselle huonompaan suuntaan. Jos valtio on jollain tavalla mukana projektissa, riski siitä, että projektia aktiivisesti sössitään valtion taholta pienenee. Tämän sössimisriskin alentamista siis kutsutaan ECOFYS:n kielenkäytössä tukiaiseksi. Kustannus toki häviää sillä sekunnilla, kun pyrkimykset sössimiseen loppuvat.

“Tuulivoimaloiden ei tarvitse olla kasvottomien suuryritysten omistamia.” kertoo Lähienergia jutussaan. Kaksi “kasvokasta” pohjalaista yrittäjää (Kari Komsi ja Jaakko Niemi) ovat rakennuttaneet itselleen tuulivoimalan.

“Paikallisen omistuksen myötä tuotannon tulot eivät karkaa suurten yhtiöiden mukana muille maille.”
Mutta mutta… mistä nämä tulot tulevat ja kuka ne saa? Tulot tulevat tietenkin syöttötariffista (10.53 senttiä/kWh vuoden 2015 loppuun ja 8.35 senttiä/kWh 9 vuotta sen jälkeen), jonka maksaa muu yhteiskunta (pääosin Teuvan kunnan ulkopuolella). Tulot taas menevät voimaloiden omistajille eli tässä tapauksessa kahdelle “kasvokkaalle” yrittäjälle. Jos tämä kyseinen voimala toimii 25% kapasiteettikertoimella, parivaljakko tienaa sillä vuodessa liki 600000 euroa ensimmäiset kolme vuotta ja noin 450000 vuodessa yhdeksän vuotta sen jälkeen…yhteensä noin 6 miljoonaa. Jos voimalan elinikä on 20 vuotta ja sen tuotannosta saa 5 senttiä/kWh hinnan 12 vuoden jälkeen, tienestäjä tulee vielä tuohon päälle noin 2 miljoonaa. Jutussa ei kerrota voimalan hintaa, mutta jos arvioimme hinnan 1.5 miljoonaa/MW tasolle se on maksanut ehkä 4 miljoonaa. Luultavasti ihan hyvä diili yrittäjille ja onnittelut vain heille. Lähes riskivapaata voittoa molemmille pyöreästi kaksikertaa suomalaisen keskipalkan verran.

Kysymys: Mikä mahdollisti pääsyn tämän yhteiskunnan tarjoaman mukavan etuuden piiriin?

Vastaus: Mahdollisuus löytää 4 miljoonaa euroa nurkista lojumasta. Jos etuuden ennakkoehtona on suurten pääomakasojen omistaminen, ei liene ole yllättävää, jos hyöty valuu ennen kaikkea niille, joilla on paljon varallisuutta. Tiedän olevani hiukan kummallinen, mutta jos minulta kysytään, niin mieluummin maksan sähkölaskuni vaikkapa “kasvottomalle” kunnalliselle sähköyhtiölle kuin saan (kenties kuvalla varustetun) laskun yhteiskunnan hyväosaiselta. Jos tuulivoimaloita halutaan rakentaa, miksi valtio tai kunnat eivät rakenna niitä suoraan ja rahoita tätä vaikka nostamalla veroja niille, joilla on varaa miljoonien investointeihin yksityisinä ihmisinä? Nykyinen tapa on ilmiselvästi regressiivinen. (Toisaalta joskus vaikuttaa siltä, että nykyisessä kielenkäytössä poliittisesti korrekti termi tällaiselle kylä- tai kaupunkitason plutokratialle on “energiademokratia” tai jotain vastaavaa höttöä. Oli miten oli, sokeus tulo- ja varallisuuseroista on hyvin silmiinpistävää lähienergiasta ja hajautetusta tuotannosta puhuttaessa. Tästä hiukan lisää myös aikaisemmassa kirjoituksessani.) Ehkä regressiiviselle politiikalle voi olla järkeviäkin perusteita, mutta koska koko ongelma piilotetaan kivalta kuulostavan yhteisöllisyys-höpötyksen taakse, ei niitä (kenties) järkeviäkään perusteita koskaan kuule.

Toki ymmärrän miksi nykyinen tapa on valittu. Se luo äänekkään tyytyväisten hyötyjien joukon lobbaamaan, kun taas kustannukset jaetaan kaikkien kesken. Kustannukset per henkilö ovat alussa alhaiset, jonka vuoksi kukaan ei valita. Toki tilanne muuttuu kustannusten noustessa ja poliittinen tuki valitulle linjalle alkaa murentua. Tämä on jo nähty monessa maassa. Ilmastopolitiikan kannalta tämä on tietenkin tuhoisaa, mutta sen pohtiminen vaatisi tavallista kaukokatseisempaa ajattelua.

John Morgan tiivisti asian hyvin kahteen kuvaan twitterissä. Ensimmäinen kuva antaa arvion siitä kuinka paljon energiaylijäämää (EROEI) tarvitaan erilaisten yhteiskunnan aktiviteettien pyörittämiseen. Historian lukeminenkin opettaa,että moni mukavan sivistyneen yhteiskunnan ominaispiirteistä (terveydenhuolto, kulttuuri, koulutus…) syntyi vasta, kun korkean EROEI:n polttoaineita/tekniikoita alettiin käyttämään. Hallin ja Prieton arvio on, että nämä aktiviteetit vaativat EROEI:n, joka on yli 10.

Jos näitä asioita arvostaa ja ne haluaa omaan ihanneyhteiskuntaansa, loogisesti herää kysymys mitkä energian lähteet voivat riittävän korkean EROEI:n aikaansaada? Morganin toinen kuva vastaa tähän kysymykseen perustuen tuoreeseen D. Weißbach et al. tutkimukseen. Valitettavasti sen enempää tuulivoima, aurinkosähkö kuin bioenergiakaan ei tähän pysty, kun energian varastoinnin tarve otetaan (jossain määrin) huomioon. Jos haluamme energianlähteen, jonka hiilidioksidipäästöt ovat pienet ja joka pystyy sivistynyttä yhteiskuntaa pyörittämään (kuulostaa kivalta eikö totta?), jäljelle jää kaksi vaihtoehtoa — vesivoima ja ydinvoima. Aiheesta lisää esimerkiksi täältä.

Follow me on Twitter

Goodreads

Amnesty international

Punainen risti

Unicef