Tämä on yksi niistä postauksista mitä en olisi uskonut tarpeelliseksi, mutta aina oppii uutta. Kummallisen moni näyttää elävän siinä käsityksessä, että maanviljelyksen “jätevirrat” voivat olla merkittävä energianlähde. Olen kirjoittanut tästä ennenkin, mutta palataan nyt tähän. Kertaus on opintojen äiti.


Kestävä bioenergian potentiaali

Suomessa mm. Neocarbon projekti ja Vihreät väittävät peltobiomassassa piilevän yli 20 TWh:n aarteen. Lähteenä tälle on Vihreillä Hannu Mikkolan väitöskirja.  Jos oikein sitä luen, mitään ympäristövaikutusten arviointia ei oikeastaan ole siinä tehty tai verrattu esimerkiksi vaihtoehtoisia toimintatapoja toisiinsa. Siellä ei siis ole pohdittu olisiko esimerkiksi metsittäminen parempi vaihtoehto tai sitä voidaanko näitä energiaplantaaseja tarvita tulevaisuudessa ruuantuotantoon.  On laskettu hehtaareja ja hehtaarikohtaisia tuottoja mm. ruokohelppiplantaaseilta ja päädytty tulokseen, että oljessa olisi energiaa ehkä 8 TWh ja että ruokohelvestä voisi saada ehkä 12 TWh. Noita voi verrata esimerkiksi Suomen energian kulutukseen, joka on lähempänä 400 TWh:a, mutta onko todellinen potentiaali likimainkaan edes tuon suuruinen? Rohkenen epäillä, että ei ole.

ECOFYS arvioi sivuvirtojen kuten oljen kestävää potentiaalia EU:ssa. He siis arvioivat myös sitä, että osalle näistä sivuvirroista on muutakin käyttöä ja kaikkea niistä ei voi ekologisin perustein hyödyntää (oljesta osa on jätettävä maaperään). He eivät antaneet arvioita Suomelle, mutta Tanskaa kyllä käsiteltiin. Oljen kestäväksi potentiaaliksi arvioitiin noin 3.2 miljoonaa tonnia “märkää massaa” (wet matter). Tästä määrästä osaa tarvitaan esim. karjan kasvatuksessa, mutta 1.4 miljoonaa tonnia arvioitiin potentiaaliksi energiantuotannossa. Jos energiatiheys on noin 9MJ/kg, tuo tarkoittaa noin 3.5 TWh energiaa. Tuo määrä on Tanskassa käytössä jo nyt eli lisäyspotentiaalia ei ole muuten kuin kestävyysnäkökulmat sivuuttaen (mitä 100%RE visionäärit valitettavasti tekevät).

Miten tuo arvio Tanskalle suhtautuu meihin? Arvio Tanskalle oli siis, että oljista 3.5TWh, kun taas Mikkolan väitöskirjassa oli Suomelle 8TWh. Tanska tuottaa viljoja vuodessa reilut 9 miljoonaa tonnia, kun taas me noin 3.6 miljoonaa tonnia. Kaiken järjen mukaan meidän kestävä potentiaalimme oljelle on alhaisempi kuin Tanskan, koska olkea syntynee vähemmän? Mikkolan väitöskirjan luku lienee vain arvio kaiken pelloilla kasvavan biomassan (jyvät poislukien) energiasisällöstä. Realistinen potentiaali liikkunee TWh suuruusluokassa. Onko sen käytössä mitään järkeä kun kustannukset ja vaadittava työ otetaan huomioon onkin sitten toinen kysymys. Pääpointti on kuitenkin se, että näistä jätepuroista puhuminen on korvikepuuhaa todellista dekarbonisaatiota odotellessa.


Renewables industry lobby group REN21 has published a new report “Renewables Global Futures Report 2017“. The report is written by Sven Teske who used to write similar reports together with the industry lobby groups for Greenpeace (some content has been copied from there). For this new report Teske et al. interviewed a bunch of “renowned energy experts” who were selected by asking for suggestions from…REN21! As a result of this careful selection process, they created a nice safe space of experts whose interests and preferences likely align well with the objectives of REN21. Success guaranteed!

Screen Shot 2017-04-07 at 18.32.49


Strangely they then explain how they ranked each candidate according to their level of faith, but as far as I can see, nowhere do they either explain what their ranking was or how it was used. There is some discussion that seems to indicate that faith was strong mainly among europeans and among these germans and greens seemed to be strangely well represented. Go figure.

Ren21_demand 2017-04-07 at 14.23.40.png

Increased demand. Those thinking demand will be lower in 2050 are outliers.

Now it is not too surprising that those interviewed have a relatively high level of faith in renewables, but it is more interesting to explore how their expectations actually align with serious climate policies. This report ignores actual emissions implication almost entirely and one can only wonder why? It is not, however, difficult to see the implications. First of all, even most of their carefully chosen experts foresee substantially increased energy demand.


“Expert debates within the climate and energy communities take place largely within their own silos…”

Bizarrely the report then seems to criticize its own experts by speculating on why they are wrong. So who were the renowned expert? Teske or the people interviewed?


More renewables, but lots of other stuff as well and how much of this is things like biofuels?

As for the share of renewables of the overall demand there were varying opinions, but it seems that median expected share in 2050 was around 50%. So lets put things together. Around 40% demand increase, maybe 50-60% RES share and we are left with maybe 30% emissions reductions from energy production by 2050. So sad. So their carefully selected experts do not, in fact, believe that renewables can deliver the kind of emissions reductions we need. Why didn’t Teske or REN21 highlight this? It does not promote happy talk for sure, but maybe time for happy talk is over and we should start feeling inspired by policies that would actually be meaningful. Grownups see the need for action on a broad front with all possible tools on the table.

PS. The report has also weirdly misleading spin. See below for an example. For those familiar with Teske’s past behavior this is not too surprising. When IPCC made the mistake of giving him the microphone when their SREN report (on renewables only energy issues) was released. He promptly used this as an opportunity to promote Greenpeace’s and industry’s E[R] scenario as representative of the SREN scenarios while ignoring contributions from most other authors. In reality  E[R] was an extreme outlier even in the context where most authors were probably more kindly disposed towards renewables than the average.

Correction added 8.4: I misintepreted the below figure. (I thank Ikemeister for pointing this out.) The text talked about doubling (from 28%) so the claim is correct (although phrasing/spin could be clearer IMHO). I cannot resist pointing out how the text accompanying figure on RES share of final demand was crafted. Note that more than 60% share was guessed by about 49%. Text quotes higher figures by using subsamples from India and Europe. Desire to spin the right narrative was stronger than desire to use all the data.

REN21_Poll_Notheydidnt 2017-04-07 at 14.22.31.png

No they didn’t. About 41% did. (note correction)

Added 8.4.2017: Note also how skewed the distribution of experts is. About half seem to be from  few west european countries (most are germans), from Japan, or US. That is less than 10% of global population and from rich countries that are unlikely to determine the energy trends for humanity in the next decades.

Addition 13.4.2017: I will add a little news on the issue of “spin” since this happened almost at the same time as this post. Reuters relying on some Greenpeace report announced that China will spent a lot on solar and wind etc. Being a sort of guy who likes to go to actual sources, I tried to find it. I found a press release announcing this, but then had to follow a link to a Greenpeace-China page . Then from the very bottom of this chinese page I eventually found a link to the actual report (in chinese). I almost got a feeling they didn’t want people to actually read it. So of course I had to have a look and ran it through a translator. Below is the reports vision on chinese electricity supply and demand until 2030. The vision implies substantial increases in the use of fossil fuels. Increases in low carbon sources is inadequate to even cover the rising demand let alone decarbonize. One would think this would be relevant piece of information for public to know, but clearly Greenpeace thought otherwise.

Screen Shot 2017-04-12 at 15.37.12

Vision implying climate failure. 


In the earlier post I summarized my estimates on the limits to capacity utilization if production is done either with wind or solar power.  Here I will (over)think implication a bit further.  mthOn their own wind and solar power implied strong restrictions on achievable utilization rates. Overbuilding generation capacity (and associated distribution system) could increase utilization rates, but at the expense of ever increasing amount of wasted power and underutilized power lines. Storage could also help, but smoothing out the production profile would require large amount of underutilized storage capacity. There doesn’t seem to be away around this. Low capacity factor of variable power source has cascading effects elsewhere. If not fixed capacity utilization of end users would be strongly constrained and most likely too low to enable profitable business. On the other hand attempts to fix the problem would imply underutilized generators, power lines, and/or storage. Technical developments will not change this since the problem is not due to specific technology or costs.  Are there ways around these problems? Of course…

If you are planning to invest in a new plant producing for example solar panels and you find production to be unprofitable with utilizations rates implied by solar power, your first choice is simply not to invest. If economic preconditions do not exist, production never materializes even if we might find such production desirable or even critically important. Production would either not happen or move to a place where higher utilization rates are possible. Various shades of gray might also exists as they do today especially in the developing world. If production process is such that you could for example store some parts for later use, it might be possible to outsource only those phases which require reliable power elsewhere. Of course, this still opens up possibilities for those not saddled with the same constraints.

Another option is not to rely solely on variable renewables, but to have a fleet of dispatchable generators delivering the power services variable renewables cannot deliver. Today this most likely implies burning fossil fuels, but in principle hydro and nuclear power would work as well. This again implies overbuilding infrastructure and is unlikely to be economically optimal. However this fundamental reliance on existing infrastructure is the order of the day in the developed world.

Visions where variable renewables dominate are aspirational marketing material while on the ground unholy alliance seems to have quietly developed between many renewable and fossil fuel lobbyists. Cozy reliance on fossil fuels enables somewhat more variable renewables to be built before technical limitations become apparent. Supporting this modest buildup (with public money) buys fossil fuel industry social licence as well as removes long term threat of actual decarbonization. Petty about the climate, but the constituency for whom this is actually a priority is weak.  This is welcome also for many politicians who are only too happy to project an appearance of activity (at relatively low cost) while their policies imply changes which have a marginal impact on the actual problem. This relates to deep decarbonization in a same way as “champagne socialism” relates to revolution of the proletariat.

I recently read a very interesting book “Fossil Capital” by Andreas Malm on the history of industrial revolution in the United Kingdom. (Note: book is only worth reading until chapter 12. There the author got tired of thinking.)  Malm focused on the question of why coal and steam engine won over water power in the early decades of the 19th century. Remarkably coal did not win because water resource would have been insufficient. There was still plenty of untapped potential in the UK. Also coal did not win because it was cheaper. In fact, mechanical power from steam engines was more costly and many were of the opinion that it was also of worse quality. So what happened?

There were many overlapping reasons. For example, factories followed labour to the cities. In the early 19th century it was already clear from the demographics that labour was to be found in the cities. Water power was dispersed and getting meek labour to run the machines in the middle of nowhere was harder. In fact, owners of water powered factories were relatively more dependent on the apprenticeship system providing them with, what can apparently with some justification be called,  slave (child) labour. Water power was also more variable than steam, which made it even more important to have well behaved labour that would be willing to work long and irregular hours.

However, it turned out labour did not think their position was optimal (go figure) and started to make noise. This resulted in legal (and actually enforced) restrictions on working hours and gradual improvement on workers position. (It also induced technological change that made large number of especially troublesome workers redundant, but let us not talk about that here.) Owners did not of course like these limitations and lobbied against them, but relatively speaking those using steam found it easier to adapt. They could live with the shorter and more regular working week since reliable power could enable high productivity during working hours. Coal became the backbone of british industrial might and the road was opened for more broadly shared economic growth.

So can we learn something from this? I think we can since economic and social arguments for why coal won have not disappeared. If you listen to todays renewables promotion, you will be constantly bombarded with statements about how huge the potential energy resource is and how cheap it is…or is going to be any day now. Might it be a cause for concern that these two reasons were also promoted by water proponents in the 19th century Britain just when coal was taking over? Might there be a risk, we are discussing beside the point? If excessive reliance on variable renewables end up limiting capacity utilization, is there not a similar risk that water power faced in the 19th century? Who bears the cost of lower utilization? Labour? Lower salaries and/or more irregular working hours anyone? Vacations in the winter since solar power produces mainly in the summer?  If push comes to shove and such questions have to be asked, I am quite sure any techno-fetishes we might have, will evaporate.

To me conclusion seems clear. It is unlikely humanity will ever be primarily powered by variable renewables. If fuel etc. costs for dispatchable generators are high compared to the cost of electricity from variable renewables, wind and solar might be economically justified as a part of a more diverse fleet of generators. However, it is also possible that on economic grounds they will remain niche producers whose existence is dependent on subsidies and political good will. Future will tell.

This will probably be a fairly long post mainly summarizing findings from my simple toy model….so proceed at your own peril.  For a while I have been interested in how the properties of the power source affect the end user. For the consumer different power sources deliver very different value, but the public discussion is typically centered (more or less honestly) on costs. I think one issue of great relevance is the capacity utilization and the aim of this post is to record my studies on the matter. In particular I wish to explore the variable power sources such as wind and solar in the context of capacity utilization. My thoughts are in the end closely related to “capacity factor rule” discussed by John Morgan, but I approach the issue from somewhat different angle.

What is a capacity utilization  and why it matters?

Capacity utilization compares realized production with what could be possible. The concept seems to be somewhat fuzzy since theoretically maximum output could be defined in different ways. However, for an advanced economy capacity utilization is high, for example, in EU it is typically higher than 80% with a scary dip during last financial crisis. In an undeveloped country capacity utilization is lower, for example around 55% in Bangladesh. This makes sense, since things like poor infrastructure hamper production that might have otherwise happened. High capacity utilization is needed especially when lots of capital is spent since otherwise production could not cover capital costs. If high capacity utilization cannot be ensured, investments requiring large amounts of capital will not happen (unless one finds someone to pay for the losses).

In a developed economy capacity utlization is not really limited by the power supply. We get power from the plug whenever we need it. Capacity utilization is limited more by things like rising labour costs if one aims for maximum production or perhaps uncertainty on whether or not a buyer can be found for the product. However, our electricity production follows the demand and not all power sources can do that. Some view it desirable that consumers should in fact adjust their consumption according to weather. This raises the question: “How will this limit the capacity utlizations?”

This is a hard question and I can only scratch the surface here. I assume a “machine” or factory that can use certain amount of power and what is produces is proportional to its electricity consumption. I will then either use wind power or solar power as a power source and also add a storage to help even out the power variations. If there is excess power and storage is not full, we fill it. If power supply is lacking, we drain the storage. (I assume 80% round trip efficiency.) How much power machine can use, is a variable. It probably makes no sense for this to be higher than the wind or solar capacity, but if it is reduced utilization rate for the machine can probably be increased. It should be noted that the estimates below do not (of course) use the economists definitions for capacity utilization. This is more likely to give an estimate on the additional limitations on capacity utilization on top of all those other factors that are operating in any case.

So let me quickly summarize what I find…

Figure 2: Wind power source limited capacity utilization as a function of “machine capacity” (i.e. what fraction of power source capacity it can use) and storage (days at average wind production). Wind power data from UK 2013.

Figure 3: same as Figure 1, but using solar power as a source. (Production data from Germany 2015.)

Figures 2 and 3 show my rough estimates for the “capacity utilization” as a function of machine capacity and amount of storage (hours of average power production). If machine capacity is equal to the capacity of the power source, capacity utlization is limited by the capacity factor of the power source. As machine capacity is reduced and/or storage is added capacity utilization can increase. However it is very hard to get to a situation where power source would not be a factor substantially limiting the overall capacity utilization.

In terms of capacity utilization wind power tends to beat solar power which has strong seasonal production profile. Removing that is hard since it would require massive amounts of seasonal storage which would (by definition) be used only by about once a year.

As machine capacity is reduced, the “factory”can run at a higher capacity utilization, but then certain fraction of the produced power will be wasted although waste can be reduced somewhat by storage. If we aim for high capacity utilization, wasted fraction can unfortunately be substantial. The unit cost of useful energy will rise with increasing waste.

Figure 4: Fraction of wasted wind output.

Figure 5: Fraction of wasted solar output. (Once daily variation is covered it is very hard to change things by adding even more storage.)

Waste can be reduced with storage, but then the question arises that how efficiently this storage is being utilized? Figures 6 and 7 illustrates this. If we add so much storage that capacity utilization is high and amount of wasted power is low, we tend to have a large amount of under utilized storage capacity lying around. Storage that is combined with solar power tends to be more efficiently used because of regular daily variation.

Figure 6: How efficiently storage is being utilized with wind power. (Here the scale is more arbitrary. I assumed full utilization amounts to one full cycle a day.)

Figure 7: Same as figure 5, but with solar power.

I suspect that these estimates are in fact too optimistic. If I choose a point from figure 2 with relatively high “capacity utilization”, the power supply for the machine is still quite erratic as seen in Figure 8.

Figure 8: Example power input to the machines when machines powered by wind had a capacity of 0.26 of wind capacity and system had 36 hours of storage at average wind output. Still a mess.

Maybe there are processes that do not mind this, but there are  also plenty of industrial processes where steady power supply is needed and where abrupt power cuts will undermine the economics of the plant. (It would be interesting to have real world examples of production economics as one changes between power sources. Do you know any? I suspect that current way of delivering power to industries in developed economies is close to optimal for their needs.)

I think I will stop here and discuss later what I think this will imply. Main point here is that nature of the power source will affect the capacity utilization and have economic consequences that are not accounted for when myopically computing the “cost” of electricity for the power sources.

Esitin alla olevan kysymyksen äskettäin Espoon Vihreille. Kysymys on relevantti myös muissa pääkaupunkiseudun kunnissa.

“Koetan löytää oikeaa tahoa tästä asiasta keskusteluun ja yritän nyt ensin täältä. Kyse on Vihreiden kannasta bioenergiaan ja erityisesti nyt kuntavaalien yhteydessä kuntatasolla. Vihreissä on pitkään ajettu bioenergian lisäämistä ilman, että mm. sen ilmastovaikutuksiin (tai ekologisiin vaikutuksiin) olisi kiinnitetty riittävästi huomiota. Viimeaikoina tähän on tullut muutosta ja Vihreistä on alkanut kuulua kritiikkiä etenkin hallituksen suuntaan liiallisesta bioenergiapainotuksesta. Tämä on tervetullutta. Mutta mitä tämä implikoi kuntatasolla? Vihreät ovat merkittävä puolue pääkaupunkiseudulla ja sekä Helsingissä ja Espoossa energiantuotannon ilmastotoimet nojaavat hyvin vahvasti fossiilisten korvaamiseen puulla. Kritiikki hallitusta kohtaan on tervetullutta, mutta hiljaisuus (tai suorastaan puunpolton juhliminen) omalla takapihalla on kummallista. Eli mikä esimerkiksi Espoon vihreiden näkemys on asiasta? Mihin toimiin voidaan ryhtyä puunpolton jarruttamiseksi? Halutaanko siihen ryhtyä? Onko esim. kaukolämpö edes kunnallispoliitikkojen asia? Jos asioiden annetaan mennä omalla painolla, miten bioenergian ilmastovaikutukset otetaan kunnassa huomioon? Mikä pitkän tähtäimen (seuraavat vuosikymmenet, jos Pariisi otetaan tosissaan) strategia koko energiantuotannon dekarbonisoinniksi oikeastaan on? Bioenergiaan se ei voi nojata. (Otaniemen geoterminen pilottiprojekti on kiva ja kannatettava tutkimus/kehityshanke, mutta omaa suuret riskit ja on nyt käsittääkseni tuumaustauolla porauskustannusten noustua.)”

En ole toistaiseksi saanut tähän oikein pohdittua vastausta. Olen saanut mm. viittauksen Vihreiden 2035 energiavisioon, jossa (poiketen aikaisemmista visioista) metsäbion määrä ei lisääntyisi olkoonkin, että sekä Helenin, että Fortumin suunnitelmissa tämä nimenomaan on. Tilanne ei ole tyydyttävä. Metsäbion ilmastovaikutukset ja ekologinen vahinko ovat  ikäänkuin kansallisen tason kysymys ja Kepun syytä, kun taas kuntatasolla bioenergiaa juhlitaan ilmastomeriittinä.

Ymmärrän, että tämä on hankala kysymys. Yksi jos toinen poliitikko ja järjestö on  ajanut bioenergian lisäämistä jokseenkin kritiikittä ja esimerkiksi ilmastovaikutukset sivuuttaen. Nyt näitä vaikutuksia on alettu hitaasti tunnustamaan, mutta toki kynnys omien virheiden tunnustamiseen ja reflektioon on korkea. Mutta positiivisesti katsoen tässä olisi myös hieno mahdollisuus kasvuun. Vihreät voisivat esim. pohtia syitä miksi bioenergia alunperin hyväksyttiin niin kritiikittä? Eikö se ollut alun alkaenkin kummallinen linjaus “puun halaajilta”. Miksi siihen yhä tarrataan (eri muodoissaan) niin hanakasti?  Mikä ryhmän dynamiikassa tämän aiheutti ja miten tulevaisuudessa vastaavia virheitä voisi välttää?

Samoin olisi korkea aika pohtia kuinka pääkaupunki seudun kuntien energiantuotanto oikeasti dekarbonisoidaan sen sijaan, että leikitään marginaalisilla päästövähennyksillä ja puunpolton “hiilineutraalisuudella”. Tällä hetkellä kenelläkään ei ole tolkullista visiota, joka aikaansaisi syvät päästövähennykset…poislukien ne, jotka tämä tavoite mielessään haluavat pitää avoinna mahdollisuuden kaukolämmön tuottamiseen ydinvoimalla.

Päivitys 26.3.2017: Olen kysynyt tätä asiaa monelta taholta huonolla menestyksellä. Vaikuttaa vahvasti siltä, että tähän ei haluta vastata eikä asiaa käsitellä. Itselleni hölmöt aikaisemmat kannat eivät ole este äänestämiselle mikäli virhettä halutaan käsitellä ns. “in good faith” ja tavalla joka luo luottamusta siihen, ettei virhettä toisteta tai sillä suorastaan vaivihkaa ratsasteta. Nyt näin ei näytä olevan ja päätynen äänestämään kuntavaaleissa muita kuin Vihreitä vaikka sinänsä olisin samoilla linjoilla monissa kunnan kannalta relevanteissa asioissa.

Aki Suokko ja Rauli Partanen ovat kirjoittaneet uuden kirjan “Energian aika:avain talouskasvuun, hyvinvointiin ja ilmastonmuutokseen”, joka käsittelee tämänkin blogin keskeisiä teemoja eli energian, ympäristön ja talouden yhtymäkohtia. Voin suositella kirjaa lämpimästi ja eipä tästä erityistä “kirja-arvostelua” taida tulla, koska ns. “I approve of this message”.energianaika

Haluan erityisesti nostaa esille kirjan keskustelun talouskasvusta ja degrowthista. Tätä käsiteltiin teemaan sopivalla hienovaraisuudella ja nyanssilla ilman olkiukkojen rakentelua.   Aivan liian usein tätä keskustelua dominoivat ääripäiden fundamentalistit, jotka rakentavat tarpeetonta vastakkainasettelua kenties osin retorisena keinona korostaa oman näkemyksensä erinomaisuutta oman heimon keskuudessa. Toisaalla degrowth-liike on vandalismia, joka on tuhoamassa kaiken arvokkaan ja toisaalta “perinteiset” ekonomistit ovat vandaaleja, jotka ovat tuhomassa kaiken arvokkaan. Rakentavaa. Suokko ja Partanen eivät tähän sorru vaan käsittelevät mielestäni asiallisesti koko keskustelun kirjon ja jakavat kunniaa sinne minne sitä kuuluu jakaa ja kritiikkiä sinne mihin se kuuluu. Tämä keskustelu on todella laadukasta enkä ole vastaavaa lukenut edes englannin kielellä kuin paloittain siellä täällä eri lähteissä.

Kirjan otsikko puhuu “avaimesta” talouskasvuun, hyvinvointiin ja ilmastonmuutokseen. Vaikka kirjassa keskusteltiin monista tekijöistä joilla riskejä voidaan pienentää ja positiivisen kehityskulun todennäköisyyttä kasvattaa, en usko lopulta löytäneeni “avainta” vaan harmaan eri sävyjä. Näin on hyvä ja kirjoittajien kieltäytyminen kaiken kattavien ennustusten ja pelastavien visioiden tehtailusta kertoo heidän viisaudestaan. Olemme keskellä suota ja korskea hyppiminen suuntaan tai toiseen heikentää suurella todennäköisyydellä asemaamme. On parempi astella varovasti ja toivoa, että joskus päädymme tukevammalle maalle…jos sellaista edes on olemassa.

Lappeenrannassa rakennelleen malleja joissa yhden jos toisen alueen sähköntarve katettaisiin täysin uusiutuvilla.

Kuva 1: 100% RE pukkaa...koetetaan sivuuttaa tuo energian ja sähkön sotkeminen.

Kuva 1: 100% RE pukkaa…koetetaan sivuuttaa tuo energian ja sähkön sotkeminen.

Olen kommentoinut tyytymättömyyttäni näihin ulostuloihin aikaisemmin (tässä ja tässä). Nyt ryhmä on tehnyt nettiin visualisoinnin jota kutsutaan vaatimattomasti nimellä “Internet of Energy” (jos voin ehdottaa, “IntREnet of energy” olisi vielä parempi). Tämä visualisointi kuulemma demonstroi tarkasti kuinka täysin uusiutuviin pohjaava sähköntuotanto toimii ja siksi meidän pitäisi vain alkaa rakentamaan. Olen erimieltä. Visualisointi ei lisää substanssia vaan nojaa pohjalla olevaan malliin. Mikäli malli on puutteellinen, ei sitä voi korjata visualisoinnilla. Lappeenrannan ryhmä osoittaa kuitenkin esimerkillistä avoimuutta jakamalla visualisoinnin yhteydessä siihen liittyvät data-tiedostot. Tiedostot ovat suuria Excel-tiedostoja, joista löytyy tuntikohtaiset tuotanto- ja kulutustiedot eri alueista (myös tiedot siitä kuinka varastoja täydennetään ja kuinka niitä puretaan). En ymmärrä miksi 100%RE -skenaarioita tehtaillaan juuri Excelillä, mutta näillä mennään. Seuraavaksi joitain poimintoja Euroopan alueen skenaariosta.

  • Miksi Norjan ja Islannin sähkönkulutuksen vuodenaikavaihtelu puuttuu?
  • Miksi Ruotsi tuottaa sähköä alle 80TWh, kun todellisuudessa heidän tuotantonsa on ollut noin 140TWh? Mallissa Ruotsi tuo sähköä noin 1800 kertaa enemmän kuin vie? Suomi tuottaa mallissa enemmän sähköä kuin Ruotsi.
  • Onko joku kysynyt haluavatko Ruotsin lisäksi esim. Sveitsi ja Benelux maat oikeasti tuoda noin paljon enemmän sähköä kuin vievät?
  • Miksi Norja tuottaa mallissa 265TWh, kun todellisuudessa he tuottavat noin 130TWh? Tällä hetkellä liki kaikki heidän tuotantonsa on vesivoimaa, mutta mallissa sitä ei ole kuin 96TWh. Häh?
  • Monessa maassa malli olettaa tuulivoiman kapasiteettikertoimen olevan noin 50%. Miksi näin? Toisaalta esimerkiksi Saksassa kerroin on mallissa noin 37%, kun toteutunut on 20-25% välillä. Tämä liioittelee tuotantoa merkittävästi. Suomelle malli olettaa n. 30% mikä on järkevämpää. (Ja ei, kyse ei ole siitä, että mallissa oletettaisiin suuria määriä esimerkiksi merituulivoimaa. Melkein kaikki tuulivoima on mallissa sijoitettu maalle.)
  • Iso-Britanniasta Ranskaan ja Benelux maihin oletetaan 26GW+17GW siirtokapasiteettia. Onko tämä järkevää, kun todellinen on käsittääkseni noin 2+1GW? Ylipäätään Iso-Britannia on mallissa massiivinen sähkönviejä. (Suomesta pitäisi muuten vetää Balttiaan 3GW piuha Ruotsiin menevän 3GW piuhan lisäksi.)

Muutama huomio myös tuulivoiman tuotantoprofiileista on paikallaan. Voimme helposti laskea todennäköisyysjakaumat sille, että tuulivoiman tuotanto on joku tietty osuus kapasiteetista. Seuraava kuva näyttää tuloksen Suomesta sekä mallin mukaan, että todelliseen tuotantotietoon perustuen ( vuosi 2016 tähän asti).

Kuva x: Jakauma Suomen tuulivoimatuotannosta. Kvalitatiivista yhteneväisyyttä havaittavissa, mutta mutta...

Kuva 2: Jakauma Suomen tuulivoimatuotannosta. Kvalitatiivista yhteneväisyyttä havaittavissa, mutta mutta…

Jotain kvalitatiivista yhdenmukaisuutta on havaittavissa, mutta huomaa kuinka LUT-mallin jakauma vaikuttaa huomattavasti toteutunutta leveämmältä. Se näyttää antavan merkittävästi suuremman todennäköisyyden korkeaan tuotantoon kuin mitä toteutunut antaa ymmärtää. Entä sama Tanskassa, joka on mallissa merkittävä sähkönviejä?

Kuva x: Sama Tanskalle yhdessä sen kanssa miltä jakauma oikeasti näytti vuonna 2015. Ööhh??? Miten tuollaisen jakauman saa? Honest question.

Kuva 3: Tuotannon jakauma Neocarbon-mallissa ja miltä se oikeasti näytti vuonna 2015.

??? Jakauma ei näytä juuri lainkaan siltä miltä todellinen tuotantojakauma näyttää. Mitä ihmettä tässä on tapahtunut? Vastaavia esimerkkejä on muitakin…tässä tulos Iso-Britannialle.

Kuva 4: Sama Englannista, joka on myös mallissa merkittävä sähkön viejä.

Kuva 4: Sama Briteistä, joka on myös mallissa merkittävä sähkön viejä.

Jakauma näyttää pikemminkin vastakkaiselta kuin se mikä on toteutunut. Todennäköisyys on mallissa suurin maksimiteholla. Missaanko nyt jotain olennaista? Päätäni alkaa taas särkeä.headache

Lopuksi on myös hyvä huomata, että tässä “100%RE”-mallissa on ympäri Eurooppaa yli 150GW kaasuturbiinikapasiteettia. Suomessakin näitä laitoksia olisi yli 6GW edestä. Sitä miksi näitä tarvitaan näkyy mallissa hienosti esimerkiksi Saksassa Joulun aikaan. Heidän tuotantonsa (ks. kuva) on yli 120 GW, mutta sitten alkaa päivä jota verkon vakaudesta vastuussa olevat pitäisivät varmasti jännittävänä haasteena. Noin 10 tunnin aikana uusiutuvasta tuotannosta katoaa yli 100 GW, kun heidän kulutuksena on jossain 70GW nurkilla. Kaikki vaipat heitetään polttouuniin, tuodaan mitä voidaan, mutta tämä ei silti riitä. He käynnistävät nopeasti yli 20GW edestä kaasuturbiineja, jotta Joulu ei menisi pilalle. Näitä kaasuvoimaloita on siis ympäri Eurooppaa ja niiden käyttäaste on maasta riippuen 3-22% (keskiarvo 12%). Mallissa ei kerrota mistä se kaasu ilmestyi, mutta mitään synteettisen kaasun tuotantoon liittyviä menoeriä en siitä löydä. Tulee siis luultavasti töpselistä.

Kuva x: Saksa Joulun alla. Hauska päivä verkon ylläpitäjillä?

Kuva 5: Saksa Joulun alla. Hauska päivä verkon ylläpitäjillä. (Vihreällä tuuli+aurinko+vesivoima, punaisella siihen on vielä lisätty tuonti, varastot ja bio- ja jätevoima. Ei riitä…)

Kuva x: höyryvoimalat ja kaasuturbiinit auttoivat Joulun tunnelmaan.

Kuva 6: 24GW kaasuturbiineja pelasti Joulun tunnelman.

Summa summarum. Yhtä sun toista korjattavaa mallissa löytyy ja ehkä kannattaa vielä odottaa hetki ennen kuin aloitamme vain rakentamaan.

Edit: Ilmeisesti kaasun on tarkoitus olla synteettistä, mutta en ymmärrä kuinka prosessin vaatima energia oli jyvitetty kulutusprofiileihin. Myös hyötysuhde on itselleni epäselvä.

Edit : Tuulivoiman tuotantojakaumat näyttävät Excel-tiedostossa kummallisilta, koska ilmeisesti kategoriaan “excess” on laitettu hämäävästi osa tuotannosta. “Wind onshore” ja “Wind offshore” kategoria ilmeisesti pitää vain sisällään sen osan tuotantoa mikä käytetään. Jos tämä tulkinta on oikein, niin esimerkiksi Tanskassa hukattu tuulivoimateho voi mallissa olla samaa suuruusluokkaa kuin kulutettu teho.  Eli asennettu kapasiteetti on noin kaksinkertainen siihen nähden mitä voimalat korkeintaan syöttävät verkkoon. Tämä muuten myös korjaa kapasiteettikertoimia alaspäin, koska ne maat joiden kapasiteettikerroin on anomaalisen korkea, ovat maita joissa tämä hukattu teho on suurempi.

aragorn_ev Tämä jatkaa siitä mihin viime viikkolla jäin.Viimeksi käsittelin sähköautoilla saavutettavia päästövähennyksiä ja nyt teemana on autoilun kustannukset kuten myös päästövähennysten kustannukset.  Vertaan tavallista autoa sähköautoon, joka vastaa aika tarkasti Nissan Leafiä. Tämä on keskeinen rajaus. Vieläkin naurattaa se UBS investointipankin läpyskä, jossa he kertoivat onnelliselle seurakunnalle kuinka sähköauton hinta on nyt kilpailukykyinen tavallisen auton kanssa. Tavalliseksi autoksi investointipankkiirit olivat häpeilemättä valinneet Audi A7:n. LOL. Sähköauton hinnaksi oletan siis 35000 €. Lyhyt listaus muista käytetyistä oletuksista löytyy postauksen lopusta. (En viitsi edes verrata Teslaan, koska sen suuret akut, suuri koko ja korkea hinta tarkoittavat sen nostavan päästöjä kaikille muille paitsi niille joiden päästöt olivat kohtuuttoman korkeat jo valmiiksi. Tällekin väestönryhmälle päästövähennyksen hinta olisi naurettava.)

Lasken päästövähennyksen kuten edellisessä kirjoituksessani. Kustannukset lasken kuten laskisimme esimerkiksi LCOE:n (levelized cost of electricity) sähkölle. Toisin sanoen diskonttaamme pääomakustannuksia, summailemme käyttökustannuksia ja jaamme tuloksen toimitetulla tuotteella (muista diskonttaus), joka on tässä tapauksessa ajetut kilometrit. Oletan kaikelle 10 vuoden “taloudellisen eliniän” ja käytän 5% korkoa. (Laskin myös 1% korolla, mutta en selvyyden vuoksi lisää niitä tuloksia tähän. Eivät muuta peruspointia.) Lasken mukaan autoverot yms. jotta voin tarkastella myös tilannetta, jossa niitä ei ole. Sivuutan ajoneuvoveron ja vakuutukset, koska olen laiska ja toivon niiden kumoavan toisensa riittävällä tarkkuudella. En ota myöskään huomioon erilaisia käyttötapoja (esim. jos ajaa lähinnä kaupungissa voivat keskimääräiset päästöt olla aika erilaisia kuin keskimääräiset) ja oletan kaikkien huijaavan about yhtäläisesti kulutusluvuissaan.  Autojen hinnat poimin trafin sivuilta.  Jälleenmyyntiarvoja, kierrätyksiä yms. voi olla, mutta sivuutamme tämän matopurkin seuraavan kertaluvun korjauksena, joka luo liikaa savua ja liian vähän valoa.

Ymmärrän myös, että ihmiset toki ostavat autoja muistakin syistä kuin kustannuksia minimoidakseen. Suurempi auto voidaan haluta, jotta ne lastenrattaat saadaan kyytiin ja koska siihen on varaa. Kalliimpi auto ostetaan, koska se putputtaa paljon putputimmin kuin kilpaileva vaihtoehto (kirjoittaja ei ole järin kiinnostunut autoista, jos ette arvanneet), mukinpitimiä on juuri oikea määrä yms. olennaista… hohhoijaa…sivuutan nämä. Jos  joku haluaa tutustua yksityiskohtiin ja kenties metsästää bugeja, kehotan kahlaamaan käyttämäni (matlab) tiedostot läpi. Ne aukevat tekstieditorilla ja logiikka on toivottavasti riittävän selvää käännettäväksi toisiin työkaluihin. Suurin osa komennoista liittyy loppujen lopuksi kuvaajien yksityiskohtien nysväämiseen.

Let’s get started. Ensimmäinen kuva siirtää meidät kartalle näyttämällä tavallisella autolla ajetun kilometrin hinnan vuosittaisten ajomäärien ja auton hinnan funktiona.

Kuva 1: Tavallisella autolla ajetun kilometrin hinta vuosittaisen ajomäärän ja auton ostohinnan funktiona.

Kuva 1: Tavallisella autolla ajetun kilometrin hinta vuosittaisen ajomäärän ja auton ostohinnan funktiona.

Huomaa muuten kuinka vähän ajavalle kilometri maksaa enemmän. Kaupungeissa julkinen liikenne ei ole ainoastaan helpompaa järjestää vaan yksityinen autoilu myös maksaa “enemmän”, koska kilometrejä joille pääomakustannukset jaetaan on vähemmän. Toki voi keskustella onko sen kilometrin arvo ajajalle sama maalla ja kaupungissa? Kilometri kaupungissa voi olla käyttäjälleen yhtä arvokas kuin 10 kilometriä maalla.

Seuraavaksi sähköautolla ajetun kilometrin hinta suhteessa tavalliseen autoon. Kuva 2 näyttää kuinka monta prosenttia kalliimmaksi sähköauto tulee.

Kuva 2: Kuinka monta prosenttia kalliimpi sähköautolla ajettu km on?

Kuva 2: Kuinka monta prosenttia kalliimpi sähköautolla ajettu km on? Muutaman oikean auton hinta merkitty kuvaajaan.

Tyypillisesti sähköautolla ajettu kilometri on useita kymmeniä prosentteja kalliimpi. Vähän ajavalla sähköauto voi tarkoittaa kenties yli kaksinkertaista hintaa.Enemmän ajaville sähköauto on kilpailukykyisempi vaihtoehto etenkin, jos vaihtoehtoisen auton hinta olisi ollut noin 30000 euroa tai enemmän. Nämä erot ajetun kilometrin hinnassa olivat itselleni yllättävän pieniä.

Entä jos poistamme verot? Kuva 3 näyttää tuloksen.

Kuva 3: Kuinka monta prosenttia kalliimpi sähköautolla ajettu km on ilman veroja?

Kuva 3: Kuinka monta prosenttia kalliimpi sähköautolla ajettu km on ilman veroja?

Nyt myös melko halvalla autolla noin 15000 km vuodessa ajava maksaisi sähköautolla ajetusta kilometristä noin kaksinkertaisen hinnan. Verotus suosii sähköautoja merkittävästi.

Sitten ilmastonäkökulmaan…kuinka paljon maksamme sähköautolla vältetystä hiilidioksiditonnista? Aikaisemmassa kirjoituksessani huomautin, että esimerkiksi omat liikkumistarpeeni ja -tapani ovat sellaisia, että päästöni nousisivat, jos vaihtaisin sähköautoon. Lasken nyt vain tilanteessa, jossa päästövähennyksiä voi saada eli kun “tavallinen” auto vaihdetaan sähköautoon, jossa on yksi 26.6 kWh akku. Kuva 5 näyttää tuloksen.

Kuva 5: Vältetystä hiilitonnista maksettu hinta. Punainen viiva vastaa 40 €/tonni hintaa eli "kahvikuppi" päivässä.

Kuva 5: Vältetystä hiilitonnista maksettu hinta. Punainen viiva vastaa 40 €/tonni hintaa eli “kahvikuppi” päivässä.

Halvan auton vaihtaminen sähköautoon voi tarkoittaa yli 2000 euron kustannusta hiilidioksiditonnista. Olettamalla kalliimman tavallisen auton hinta putoaa lopulta negatiiviseksi.  Merkitsin kuvaan punaisella viivalla 40€/tonni rajan. Tämä on esimerkiksi ilmastopaneelin professorin Lassi Linnasen arvio siitä kuinka paljon ilmastonmuutoksen torjunta maksaisi (“yhden kahvikupillisen verran päivässä”). Sähköautolla kustannukset olisivat valtavasti tuota korkeammat. (Mikä liikenteen dekarbonisointi maksaisi muuten noin vähän? Vaihtaminen julkiseen liikenteeseen ehkä, mutta se vaatisi elämäntapamuutoksia, joista “kaikki on helppoa ja kivaa” arvioissa ei juurikaan puhuta.)

Toisaalta tämä lasku oli verojen jälkeen eli toistetaan se vielä ilman veroja, jotta näemme arvion ilman “tukiaisia”.

Kuva 6: Vältetystä hiilitonnista maksettu hinta ilman veroja.

Kuva 6: Vältetystä hiilitonnista maksettu hinta ilman veroja.

Vau! Kun verot poistettiin, saimme noin tuhannen euron kustannuksen hiilitonnista myös kalliimmalla autolla. Meidän verorakenteemme on itseasiassa sellainen, että meillä on jo autoilussa hyvin korkea “efektiivinen” hiilivero.  Tämä on minusta hyvä asia, mutta toisaalta se on taas asia joka tehtiin suurelta osin muista syistä kuin ilmastopolitiikan vuoksi. Tavallisen auton omistaja maksaa herkästi 10 vuoden aikana  5000-10000 euroa enemmän veroja kuin sähköauton omistaja. Huomattavaa on se, että tästä korkeasta hiiliverosta huolimatta polttomoottorit dominoivat. Korkea verotus on saanut eurooppalaiset suosimaan pienempiä autoja kuin amerikkalaiset, mutta se ei ole johtanut esimerkiksi liikenteen sähköistymiseen. Tämä antaa ymmärtää, että autoilun dekarbonisointi tulee olemaan vaikeaa ja tuskin onnistuu “kahvikupin” hinnalla.

Laitan vielä lopuksi hiukan positiivisemman tuloksen (tai siis negatiivisen). Jos vaihtaa sen tyypillisen auton pienempään 88g/km päästöiseen, voi säästää tuhansia euroja jokaista vältettyä hiilitonnia kohden. Vielä enemmän säästää luopumalla omasta autosta kokonaan mikä on monelle realistinen vaihtoehto kaupungeissa. Tämä tietenkin vaatii joitain elämäntapamuutoksia, jotka eivät ole kaikille helppoja.

Kuva 6: hiilitonnista maksettu hinta, kun normiauto vaihdetaan pieneen 88g/km tupruttavaan autoon.

Kuva 6: hiilitonnista maksettu hinta, kun normiauto vaihdetaan pieneen 88g/km tupruttavaan autoon. (Pikkuauton hinnaksi oletin 13800 €)

Summa summarum. Tänään on ilmastonmuutoksen torjunnan kannalta paljon tehokkaampaa suosia pienempiä autoja, kaupunkirakenteen tiivistämistä ja julkista liikennettä (ja sen sähköistämistä) kuin sähköautoja. Tämä ei kuitenkaan eliminoi autoilun päästöjä kokonaan eli pitkällä tähtäimellä tarvitsemme myös jäljellä olevan autoilun sähköistämistä. Sen aika ei kuitenkaan ole nyt. First things first. Saavutamme merkittävästi suuremmat päästövähennykset suuntaamalla resursseja muualle.

Oletuksia: sähkönhinta (sisältää verot ja siirtokustannukset) 11 senttiä/kWh, bensiinin hinta veroineen 1.3 €/litra, tavallisen auton huoltokustannukset 4.61 €/100km, sähköauton huoltokustannukset 1/3 tavallisen auton huoltokustannuksista (ensimmäinen luku, jonka löysin internetistä…on siis totta), autovero 17%, autovero sähköautolle 4.4%, bensiinistä veroja 58%, sähköstä veroja 30%, keskimääräisen auton päästöt 124 g/kWh, sähköauton kulutus 18.5 kWh/100km, sähköautossa yksi 26.6kWh akku.

Minua alkoi kiinnostamaan millaiset päästöt sähköautoilu aiheuttaa verrattuna vaihtoehtoihin ja kuinka paljon mahdolliset päästövähennykset maksavat. Kokoan tähän ensimmäiseen osaan oppimaani lähinnä päästöistä ja toisen osan säästän kustannuksille. Vaikka sähköauto ei polta bensaa sen käyttämä sähkö on osin tuotettu fossiilisilla. Kuinka suuri tämä osuus on riippuu maan sähköntuotannosta. Sähköauton valmistus aiheuttaa ilmeisesti lähinnä pattereiden valmistuksessa suuremmat päästöt kuin tavallinen polttomoottoriauto. Esimerkiksi tässä raportissa arvioitiin, että polttomoottoriauton valmistus aiheuttaa noin 40 g CO2 päästöjä ajetulle kilometrille, kun taas sähköauton valmistus aiheuttaa noin 70 g (elinkaaren aikana oletettiin ajettavan 200000 kilometriä). Ellingsen et al. arvioivat, että 26.6 kWh patterin valmistus aiheuttaa 4.6 tonnin hiilidioksidipäästöt. Toisaalta sähköauto aiheuttaa usein vähemmän päästöjä käytössä joten elinkaaren yli laskettuna päästövähennyksiä voi saada etenkin, jos autolla ajetaan paljon.

Kuva 1: Arvio sähköauton elinkaari hiilidioksidipäästöistä.

Kuva 1: Arvio sähköauton elinkaari hiilidioksidipäästöistä.

Mutta toisaalta tämä on itselleni liian abstraktia eikä suoraan relevanttia, koska arvioissa oletetaan itselleni täysin epärelevantti ajomäärä ja myös kilpaileva vaihtoehto. Tein siis arvion siitä miten paljon päästöissä on eroa kymmenen vuoden aikana ajomäärien ja polttomoottoriauton päästöjen funktiona. Rajasin ajan kymmeneen vuoteen, koska toisaalta yksilönä se olisi minulle relevantti aikaskaala ja toisaalta sähköautojen akkujen takuu ei taida sen kauemmas ulottua.

Seuraavat kuvat demonstroivat tuloksia. Merkitsin kuvaajaan pisteillä “itseni” ja “tyypillisen suomalaisen”. “Tyypillinen” suomalainen ajaa autollaan n. 15000 km vuodessa ja auton käyttö aiheuttaa päästöjä n. 124 g/km. Itse asun hyvien liikenneyhteyksien päässä lähellä työpaikkaa ja arvioin liikkumisen noin puoleen tyypillisestä. En omista autoa vaan liikun lähinnä bussilla tai junalla ja siksi laitoin päästötasoksi arvion bussin päästöistä per matkustaja eli 73 g/km.  Oletan ensin, että sähköautossa on yksi 26.6 kWh akku eli autolla ajaa ehkä korkeintaan hiukan alle 150 km latausten välillä.

Kuva 2: Päästöero sähköauton ja polttomoottoriauton välillä. Oletin sähköautoon yhden 26.6 kWh akun jolloin autolla voinee ajaa jonkin verran alle 150 km.

Kuva 2: Päästöero sähköauton ja polttomoottoriauton välillä. Oletin sähköautoon yhden 26.6 kWh akun jolloin autolla voinee ajaa jonkin verran alle 150 km.

Jos itse vaihtaisin sähköautoon päästöni nousisivat selvästi, mutta jos keskimääräinen autonajaja vaihtaisi tuollaiseen sähköautoon päästöt voisisivat alentua 10 vuoden aikana noin 7 tonnia. Mutta toisaalta hän voisi päästä samaan lopputulokseen vaihtamalla pienempään vähemmän bensaa polttavaan autoon. Esim. pikku Peugeotilla voisi päästä 88 g/km päästötasoon, joilloin päästöt olisivat noin samat kuin sähköautossa.

Korkeintaan 150 km ajoa voi toisissa aiheuttaa huolta ja he haluavat sähköautolleen noin 300 km ajomatkan. Sitä varten tuplaamme akkujen määrän ja lopputulos on seuraavan kuvan mukainen.

Kuva 2: Muuten sama kuin edellinen, mutta 2x26.6 kWh akkuja.

Kuva 2: Muuten sama kuin edellinen, mutta 2×26.6 kWh akkuja.

Ylimääräisten akkujen aiheuttamat päästöt eliminoivat suurimman osan tyypillisen autoilijan aikaisemmista päästövähennyksistä. Jos ei ole autoton, niin se vähän kuluttava polttomoottoriauto olisi nyt merkittävästi parempi vaihtoehto ja sillä toki ajaa pidemmälle kuin 300 km. Toistetaan harjoitus vielä lopuksi saksalaisella sähköllä. Siellä sähköauto 26.6 kWh akulla aiheuttaisi kymmenen vuoden aikan suuremmat päästöt kuin keskimääräinen polttomoottoriauto.

Kuva 4: Sama kuin kuva 2, mutta saksalaisella sähköllä.

Kuva 4: Sama kuin kuva 2, mutta saksalaisella sähköllä.

Mitä tästä opimme? Ehkä sen, että päästötase riippuu siitä kuinka paljon autoa oikeasti käyttää ja kuinka suuri akkujen käyttöaste on. Jos haluamme kannustaa suuriin päästövähennyksiin, olisi tehokkaampaa suosia julkista liikennettä ja sitä tukevaa kaupunkirakennetta. Sähköautot tulisi ehkä ensisijaisesti säästää niille, jotka ajavat paljon kuten esimerkiksi taksit. Ylisuuria akkuja tulisi välttää ja siinä mielessä hybridiauto pienellä akulla on viisaampi vaihtoehto kuin “puhdas” sähköauto. Jos haluaa ajaa pelkällä sähköllä, ehkä olisi syytä miettiä toimivia vuokraus- tai jakojärjestelmiä, jossa saa käyttöönsä toisen auton niitä harvoja kertoja varten, kun oikeasti tarvitsee sitä 300 km ajomatkaa.

Lisäys 9.10.2016: Suomen ekomodernistien Facebook sivulla on monia hyviä huomioita. Yksi huomio oli, että akkujen päästöt riippuvat jotenkin oletetusta sähkön päästötasosta. Ylläoleva arvio perustui noin maakaasua vastaavaan päästötasoon. Ellingsen et al. antavat myös muita arvioita. Dekarbonisoidulla sähköllä akkujen valmistus aiheuttaa hiukan alle 2 tonnin päästöt. Jos sähkö tuotetaan hiilellä (esim. Kiina), niin päästöt olisivat noin 6.5 tonnia per akku.

Skeptical-Thinking-gifKesän aikana selvitin hiukan syvemmälle oletuksia mitä Sitran raportin ytimessä olevaan malliin (MESSAGE) oli laitettu. Suomen osuus rakentui Global Energy Assessment (GEA) Skenaarioiden pohjalle ja niihin liittyvän tietokannan löydät täältä. Minulle tuli (taas) järkytyksenä massiivinen bioenergian lisäys ja jäin ihmettelemään miten moinen on voitu perustella. Mallintajien lähteenä potentiaalille oli VTT:n tutkijoiden artikkeli (Arasto et al. “Bio-CCS: Feasibility comparison of large scale carbon-negative solutions”).

Artikkelin kirjoittajat arvioivat, että teknispoliittinen (techno-political) maksimi bioenergialle hiilensidonnalla on 45 Mt hiilidioksidia vuodessa ja tämä on arvio mitä Sitran raportin tekjät ovat käyttäneet. Kirjoittajien arviota seuraavia varoituksia ei kuitenkaan kerrota. He kertovat mm. että maksimipotentiaali vaatii kaiken kasvun valjastamista hiilen talteenottoon eikä se ole kustannustehokas ja arvioivat realistisemman potentiaalin olevankin jossain 10 Mt nurkilla.

Reaching these magnitudes (45 Mt CO2/a) of emission reduction stated above would require use of nearly all sustainable forest growth in addition to all forest residues available in Finland. The raw material availability in relation to cost of raw material will most likely limit the exploited potential to the range of 10 MtCO2/a.

Termi sustainable taas tässä yhteydessä tarkoittaa vain puiden kasvua eikä minkäänlaista arviota aiheutetusta ekologisesta vahingosta tai vaikkapa maaperän hiilitaseesta ole itse asiassa tehty. Tämän valossa olisikin kiinnostavaa nähdä ne ympäristönsuojelijat, joiden mielestä Sitran raportin tiekartta on seuraamisen arvoinen, koska Pariisin ilmastosopimus niin “vaatii”. Fyysikot tekevät mielellään idealisointeja esimerkiksi olettamalla yksinkertaisuuden vuoksi vaikkapa pallon muotoisen lehmän. Tällä on paikkansa, mutta idealisointi näyttää skenaariotehtailussa karanneen käsistä. Luontoarvoja mitataan vain sidotun hiilen avulla eikä muiden aspektien anneta häiritä mallinnusta.

Entä mitä MESSAGE malliin sisältyi? Keskityn parhaiten esillä oleviin “illustrative pathways” vaihtoehtoihin. Ensinnäkin siellä on itse asiassa kolme skenaarioiden pääluokkaa. Supply-skenaarioissa energiankulutus kasvaa ja rakennetaan melkein mitä vain. Efficiency-skenaariot ovat lienee perinteisten ympäristöjärjestöjen unelmia. Niissä energiankukutus laskee, ydinvoima ajetaan alas ja uusiutuvat dominoivat energiantuotantoa. Sitran raporttiin on ilmeisesti valittu vain tuo “Efficiency”-pääluokka ilman, että muita vaihtoehtoja edes mainitaan. Kuka teki valinnan, miksi ja miksi sen pohjalla olevista syistä ei keskustella? Nyt jollekin voi tulla se väärä käsitys, että ikäänkuin asiantuntijat olisivat osoittaneet jonkin politiikan oikeammaksi vaikka todellisuudessa vaihtoehtojen olemassaolosta vaiettiin.

Laitan tähän alle joitain kuvaajia (vain vanha EU eli aluekoodi WEU), jotka loin tietokannan pohjalta.

Kuva 1: primäärienergian kulutuksessa tapahtuu sitä sun tätä.

Kuva 2: Vau! Katsokaa kuinka fossiilisten avulla tuotettu vety dominoi Supply-skenaariota vuosisadan lopulla. Yksi uusi vallankumous muiden lisäksi.

Kuva 3: Sähkön kulutus nousee kaikissa skenaarioissa…eli ehkä voisi unohtaa sen “emme tarvitse lisää sähköä”-argumentin?

Kuva 4: Tuulta lisää. Vähiten tuulta Efficiency-skenaariossa.

Kuva 5: Aurinkosähköä lisää. Taas vähiten Efficiency-skenaariossa.

Kuva 6: Ydinvoima.Omituisuutta vuosisadan puoliväliin asti. Sitten massiivinen kasvu yhden sukupolven aikana paitsi Efficiency-skenaariossa missä ydinvoima päätettiin ajaa alas.

Kuva 7: Hiiltä ajetaan alas, mutta sitten…kreivin aikaan… CCS pelastaa sen vuosisadan loppupuolella Supply-skenaariossa.

Miten näihin eri tuloksiin päädytään? Tulosten hajonta tietenkin johtunee siitä, että mallintajat arvaavat sisäänmenevät oletukset eri tavalla. Jos sinulla on kokemus, että energiankulutus kasvaa ja CCS on hauskaa, he näpyttelevät sellaiset oletukset, että toiveesi toteutuu. Jos kaipaat energiatehokkuutta ja uusiutuvia, tässä sinun toiveisiisi sopivat oletukset. Tämä on tietenkin osin ymmärrettävää, mutta muuttuu arvelluttavaksi, kun ensin fantasioidaan toivotut kustannukset ja vaaditut teknologiat jonnekin tulevaisuuteen ja sitten matkustetaan aikakoneella takaisin nykypäivään ja todetaan kuinka olemme nyt osoittaneet, että visio, josta me pidämme on taloudellisesti ja teknisesti kaikkein paras ja siksi yhteiskunnan resursseja tulisi siirtää meille. On muuten myös kiinnostavaa huomata, että GEA mallien kustannusoletukset näyttävät olevan ristiriidassa esimerkiksi yleisesti (väärin) käytetttyjen oppimiskäyräargumenttien kanssa. Katsokaapa esim. seuraavaa kuvaajaa aurinkosähkön oletetuista pääomakustannuksista.

Kuva 8: Aurinkosähkön pääomakustannukset.

Supply-skenaariossa rakennettiin eniten aurinkovoimaa joten eikö sen pääomakustannusten tulisi silloin olla alhaisimmat? Koska mallintajat olettavat erilaisen asymptoottisen kustannuksen, pääomakustannukset voivat poiketa toisistaan tekijällä 5 eli olla käytännössä mitä sattuu. (Tällä hetkellä Efficiency-käyrä on lähinnä toteutunutta.) Jos vastaavaa tehtäisiin ydinvoiman kohdalla, yhdessä skenaariossa sen pääomakustannus voisi olla 5000$/kW ja toisessa 1000 $/kW. Ihan miten vain asian koet. Ydinvoiman kohdalla tätä ei tietenkään tehdä vaan kustannukset on oletettu konservatiivisesti haarukkaan 3824-6170 $/kW niin, että kustannuksissa ei vuosisadan aikana tapahdu suuria muutoksia..mitä nyt kustannukset jonkin verran nousevat Efficiency-skenaariossa. Sen sijaan mallintajat kyllä olettavat rajuja hinnanalennuksia fossiilisia polttaville voimalaitoksille etenkin Supply-skenaarioissa. Miksi näin?

Globaalilla tasolla mallintajat haaveilevat muuten noin 15Gt edestä negatiivisia päästöjä vuosisadan lopulla, mutta ällös pelkää. Länsi-Eurooppalaisilla päästöt painetaan vain nollaan ja nämä negatiiviset päästöt aikaansaadaan ennen kaikkea Latinalaisessa Amerikassa ja Afrikassa. Pohjois-Amerikassa, entisessä Neuvostoliitossa ja Kiinassa puhutaan myös gigatonnitason negatiivisesta päästöistä. Afrikassa noin gigatonnin päästöt tällä hetkellä maankäytön muutoksista korvautuvat maagisesti yli 1.5 Gt hiilidioksidin sidonnalla vuosisadan loppuun mennessä samalla, kun väkiluku yli tuplaantuu ja bioenergian määrä kasvaa noin tekijällä kymmenen (josta noin puolet olisi varustettu hiilidioksidin talteenotolla). Mutta kun kerran malli näin vaatii, niin varmastihan niin tulee tapahtumaan. Latinalaisessa Amerikassa bioenergian määrän olisi myös tarkoitus noin kuusinkertaistua eli voipi olla syytä pitää sademetsistä kiinni, kun mallintajat ovat lähistöllä.

On myös kiinnostavaa huomata mitä skenaarioiden välillä ei varioida. Kaikissa malleissa talous kasvaa tismalleen samalla tavalla. Eli mallin sisään laitettu oletus on, ettei harjoitettu energia-politiikka vaikuta talouskasvuun mitenkään. Onko jossain joku, joka pitää tätä järkevänä oletuksena? Kaikki mallit myös kasvattavat bioenergian määrän EU:ssa noin nelinkertaiseksi nykyisestä tasosta (liki kaikki varustetaan hiilen talteenotolla). Eli jos mallin bioenergiapainotus vaikuttaa järkyttävältä Suomessa, se on vielä kamalampi muualla eikä tälle tarjota vaihtoehtoa. Tästä Arasto et alilla onkin varoituksen sana.

Forest biomass is the biggest biomass raw material stream in Europe. As one sixth of European forest biomass is utilised in Finland and the maximum Bio-CCS potential is 45 Mtons/a it is difficult to imagine the European potential for Bio-CCS would be proportionally a lot higher. 45Mt/a is a large amount, but this highlights the need of revising some of the Bio-CCS potential estimates presented in the public.

Tällainen häiritsevä nyanssi on siivottu Sitran raportista pois. Tuloksista on poimittu vain se numero jota kaivataan ja muu keskustelu sivuutetaan. Hallelujaa! Negatiiviset päästöt bioenergiasta hiilentalteenotolla vaaditaan, jotta lämpötilatavoitteisiin päästään vuosisadan lopussa (säteilypakote olisi maksimissaan vuosisadan puolivälin tienoilla) ja tämä monomania pakottaa vaihtoehdottomuuden skenaarioihin riippumatta siitä mitä haittavaikutuksia tällä oikeasti olisi. Kun vain yksi ongelma tunnistetaan, ei ole yllättävää, jos ehdotetut vaihtoehdot aiheuttavat valtavia riskejä siellä mihin mallintajat eivät halunneet katsoa.

Lisäys 19.8.2016: Vieläkin täytyy ihmetellä. Mallintajat siis oikeasti kokevat helpommaksi rusikoida oletuksensa niin, että hiili ja sen talteenotto halpenevat sillä seurauksella, että vuosisadan lopussa poltamme massiivisesi enemmän hiiltä kuin nyt, kuin olettaa esimerkiksi oppimiskäyrät ydinvoimalle niin, että sitä rakennetaan merkittävästi halvemmalla. Tämä tietenkin on saksankielisessä maailmassa valitettavan yleinen sekopäinen prioriteetti. Väärää vaihtoehtoa ei saa edes esittää, ettei ihmisille tule hassuja ajatuksia.

Follow me on Twitter


Amnesty international

Punainen risti