You are currently browsing the monthly archive for March 2016.

I have earlier discussed Deutche Bank and its less than stellar predictions. Due to recent news I will return to the topic briefly. Deutsche Banks reports and predictions on solar power have been breathlessly hyped in the renewables marketing web sites and links from there have polluted the discussion more broadly. It should be common sense that investment bankers should not be used as a credible source let alone on a matter which requires long term thinking extending over a century. Unfortunately, such common sense seems to be in short supply.

So now solar company SunEdison is on the brink of collapse. How did that happen when only a year ago Deutsche Bank was encouraging everyone to buy this company that was bound to be part of imminent solar revolution?

Deutsche Bank recommendations early 2015

I guess it happened the same way bubbles always pop. We had analysts optimistically predicting wonderful things… just open your wallets quickly and you can get part of the fun. That paper rubish banks had created had to be sold somewhere and surely you should do it to save the planet AND for profit. Here is a funny chart for those who believed the gospel.

Nailed it

All the while company imploded Deutsche Bank was recommending “buy”. This was going on still 4 weeks ago.

“Buy Buy Buy! God dammit, why aren’t you buying!” Few weeks ago. (Poor guy. The site)

Here is are few samples how things unfolded with scant warnings about risks. Sad really.

I noticed a new Greenpeace report “Great Water Grab” on how coal use is deepening a water crisis. I glanced at the report and used it as an opportunity to learn new things about a topic I don’t follow closely. What struck me first was the authors clear unwillingness to put the water footprint of coal into a broader context. Report reads as if coal is THE reason for water stress. Even I know that almost all the water humanity uses is used in agriculture, but this you will not learn from this report. Even though it is by far the largest driver of water consumption, the word “agriculture” (and variants of it) only appears 12 times and then in the context that coal water use conflicts with agricultural use. Incidentally “coal” appears 448 times. So I googled to learn how much do we actually use or withdraw water. The first figure shows the result…

Screen Shot 2016-03-23 at 12.40.47We seem to extract around 4000 cubic kilometers of fresh water a year and this is massively dominated by agricultural use. We can dig a bit deeper and learn from FAO that, for example, despite rapid economic growth  and modest population growth Chinese water withdrawals have only increased moderately, by about 10% since 1990. India has seen more substantial increase in withdrawals, but essentially all of this increase has been in agriculture and their growth in water consumption corresponds closely to the population growth. Greenpeace report tells that the coal use is  responsible for about 7% of all withdrawals, but if we look at the water consumption this relatively small number is reduced even further. I am sure there are places so close to the edge that even small extra withdrawals are relevant, but are there any places where water use for energy is the main cause of water stress?


Coals water consumption (includes mining) was 22.7 km3 according to Greenpeace. (Never mind  the last decimal point.)

What about household use? We (finns) use on average 155 litres per day for household use. Our household of four consumes about 10kWh of electricity a day, which might consume around 5 litres of water per person. Following figure illustrates the relative importance of different ways we use water. “Great Water Grab” on the left.

 I don’t like coal, but just attaching any apocalyptic concern on it is bad form. The real issues are serious enough and we should aim to give a fair overall picture. I don’t think the report does this, but maybe “Relatively Minor Water Grab” would have been too boring title and we all have our preferences.

And then there is the usual promotion of chosen alternatives without actually demonstrating improvements in a meaningful way. “Switching from coal to renewable energy is one of the most effective and actionable ways to save water, and ensure clean water supply for people, agriculture and environment.” Sigh… Report gives an estimate of water consumption of various power sources. The source for the graph seems solid and probably the data is reliable (although Meldrum et al. report very large ranges for consumption figures, so large uncertainties exist) Notice how concentrated solar power tends to have the highest water consumption of all. According to the latest incarnation of Greenpeace E[R] advanced scenario world is supposed to get roughly twice as much electricity from CSP at 2050 than we get from coal today. Now what am I missing? If we produce twice as much power from something which has higher water footprint, won’t this mean dramatic increase in water consumption? Would not these CSP plants be predominantly located in areas with high water stress like deserts?

Screen Shot 2016-03-23 at 11.57.05

Water use of different sources of electricity according to Greenpeace based on Meldrum et al 2013. (Notice, however, that several nuclear power plants actually use seawater for cooling and for example Diablo Canyon power plant in California desalinates seawater for its use. Plant has excess capacity for desalination and this could be used to reduce water stress elsewhere. If desalination requires about 3kWh/m3, desalination would require about 10kWh of electricity for each MWh produced. Doesn’t seem like a deal breaker.)

What about bioenergy? Greenpeace+GWEC+SolarPower Europe E[R] scenario actually relies less on bioenergy than some other scenarios loaded with renewables. Nevertheless, in power production bioenergy goes from 379 TWh (2012) to almost 3200 TWh (2050). Biofuels for transport about triples to about 8000 PJ/a and in heat supply there is an increase of about 12000 PJ/a from bioenergy. Energy crops can consume 70-400 times as much water than coal so the bioenergy increases Greenpeace promotes will likely require massively more water than coal use requires today. The energy requirements for desalination are so high that for energy crops it is unlikely to make any sense.

Why do I get a feeling that the left hand doesn’t know what the right hand is doing? Maybe my mistake is to actually read these reports assuming that they are intended to reflect a coherent plan as opposed to myopic lobbying effort. Both coal and water use are serious challenges, but in this report water problems are used as a tool to attack coal and (incoherently) lobby for E[R]. In doing so attention is drawn away from the real causes of water stress which does disservice to an important issue that needs to be addressed. World is a complicated place and to make wise decision we need to acknowledge the complexities and trade-offs and try to navigate among alternatives as well as we can. 

Neo-Carbon Energy -hankkeessa on mallinnettu täysin uusiutuvaan energiaan perustuvaa energiajärjestelmää Suomessa vuonna 2050. Perustelemme tässä kirjoituksessa, että joissakin hankkeen ulostuloissa ei ole suhtauduttu riittävällä vakavuudella sähkön laajamittaisen varastoinnin todennäköisiin kustannuksiin ja mahdollisiin materiaalirajoitteisiin vaikka litiumakkujen teknologiseen kehittymiseen suhtauduttaisiin erittäin optimistisesti.

Neo carbon energy, Yleisradion toimittaja, me ja kansalainen

Neo carbon energy, Yleisradion toimittaja, me ja kansalainen

Sähkön laajamittainen varastointi on tyypillisesti kallista ja hankalaa. Varastoinnin korkeat kustannukset ovat keskeinen syy sille miksi sähköntuotannossa käytetään (lähes) aina käynnissä olevien voimaloiden lisäksi voimaloita, joiden on tarkoitus vastata kulutuspiikkeihin. Tämä muistui meille taas mieleen lukiessamme tuoreita “Neo Carbon energy”-projektin ulostuloja energian varastointiin liittyen. Ensimmäisessä esimerkissä Yleisradion toimittaja Kalle Schönberg kertoo innostuneena Pasi Vainikkaan nojaten kuinka “Polttoaine revitään kohta ilmasta”. Tarinassa kerrotaan:

Tuuli- ja aurinkovoima ovat keskeisessä asemassa tulevaisuuden energiajärjestelmässä, jossa fossiilisista polttoaineista tulevaa hiilidioksidia ei saa lopulta enää päästää ilmakehään.

Ongelmana on kuitenkin se, että tuuli- ja aurinkovoimaa voidaan tuottaa vain kun on tuulta tai aurinko paistaa. Sähköä tarvitaan kuitenkin koko ajan.

Ongelma voidaan ratkaista, jos sähköä voidaan varastoida kätevästi. Aurinko- ja tuulivoimaloiden tuottama energia voidaan tällöin ottaa talteen ja käyttää silloin, kun tarvetta on. Yhden vaihtoehdon tähän tarjoaa hiilidioksidin kaappaaminen ilmakehästä ja muuttaminen polttoaineeksi.

– Tällä tavoin tuotettua maakaasua voitaisiin esimerkiksi varastoida ja käyttää tarvittaessa sähkön tuotantoon, Pasi Vainikka kertoo…

…Pohjoismaisella sähköllä ilmakehän hiilidioksidista valmistettu maakaasu maksaa noin 60–70 euroa megawattitunti. Venäläinen maakaasu maksaa meille nykyään runsaat 30 euroa megawattitunti. Hinta on siis noin kaksinkertainen, Pasi Vainikka kertoo.

Toisessa esimerkissä Lappeenrannan teknillisen yliopiston professori Christian Breyer, joka on myös osa “Neo-Carbon Energy” hanketta käsittelee konferenssipaperissaan varastointia osana täysin uusiutuviin pohjaavassa energiaskenaariossaan vuodelle 2050. Haluamme nyt nostaa esille eräitä mielestämme relevantteja asioita, jotka Vainikka ja Breyer sivuuttavat.

Ensinnäkin on huomionarvoista kuinka alhaiseksi Vainikka arvioi ilmakehän hiilidioksidista valmistetun maakaasun hinnan. Synteettistä maakaasua voidaan valmistaa (riittävästi puhdistetusta) hiilidioksidista ja esimerkiksi sähkön avulla vedestä hajotetusta vedystä. Hiilidioksidin kaappaamisen suoraan ilmakehästä on arveltu maksavan kenties noin 500 euroa/tonni. Tuolla hinnalla pelkästään synteettisen maakaasun tuotannon vaatima hiilidioksidi voi maksaa enemmän kuin Vainikan arvioima lopputuotteen hinta.  Lisäksi Socolow varoittaa prosessin vaativan herkästi niin paljon energiaa, että saavutettu päästövähennys voi olla vaatimaton verrattuna päästöihin, jotka hiilidioksidin väkevöinti ilmakehästä aiheutti. Kun teemme vastaavan arvion vaadittavan vedyn hinnalle, voimme todeta senkin maksavan helposti yli 70 euroa/MWh. Toiset alan tutkijat arvioivat synteettisen maakaasun hinnaksi noin 180 euroa/MWh, kun sähkön hinnaksi oletetaan 30 euroa/MWh ja hiilidioksidin lähteeksi joku muu kuin ilmakehä.  Tämä on merkittävästi Vainikan arvioimaa hintaa korkeampi ja melkein kymmenkertainen verrattuna venäläiseen maakaasuun jota suuret teollisuuslaitokset käyttävät. Kysyimme asiasta Vainikalta ja hän antoikin ystävällisesti linkin Breyer et al. artikkeliin, josta voi oppia lisää. Valitettavasti artikkelissa esitetyt kustannusarviot eivät näytä juurikaan liittyvän Yleisradion jutussa esitettyyn skenaarioon. Ensinnäkin artikkelissa oletetaan hiilidioksidin hinnaksi 10 euroa/tonni, joka ei perustu hiilidioksidin tiivistämiseen ilmakehästä vaan sellutehtaan savupiipusta (jolloin siinä on luultavasti liikaa rikkiä prosessissa käytettäville katalyyteille, kuten Vainikka toteaa Yleisradion jutussa). Toiseksi esimerkkilaitoksen (Case A) käyttöaste on yli 90%. Laitosta ei siis ollut ajatus ajaa tuulivoimalla, jonka kapasiteettikerroin on kenties noin 30% eikä aurinkosähköllä, jonka kapasiteettikerroin olisi Suomessa noin 10%. Laitosta ajettaisiin de-facto aina käynnissä olevalla perusvoimalla. Mikäli käyttöastetta lasketaan sille tasolle mitä vaihtelevat uusiutuvat edellyttävät, lopputuotteen kustannus nousee selvästi. Tämä on asia, joka myös Neo-Carbon Energy -hankkeessa myös ymmärretään (kalvo 29).

Lappeenrannan teknillisen yliopiston professori Breyer (yhdessä Michael Childin kanssa) mallintaa konferenssi-julkaisussaan Suomen energiajärjestelmää täysin uusiutuvaan energiaan perustuen vuonna 2050. Heidän paperissaan Suomessa on yhteensä asennettuna 70 GW aurinko- ja tuulienergiaa vuonna 2050. Tämä määrä vaihtelevaa uusiutuvaa energiaa kattaa 70 % Suomen sähköstä ja 60 % koko energiatarpeesta ja tarvitsee arvion mukaan 170 GWh litium-ioni akkukapasiteettia. Kuinka paljon tämä on? Julkaisussa ei tätä pohdita, joten tarkastellaan tässä asiaankuuluvia mittaluokkia. Alla olevasta kuvasta näemme, että vuonna 2012 käynnistetty JCESR-ohjelma (joka sai Yhdysvaltain energiaministeriöltä 120 miljoonaa dollaria litium-akkujen kehitykseen) tavoittelee energiatiheyttä 400 Wh/kg vuonna 2017. Teslan litium-akkujen energiatiheys on tällä hetkellä hiukan suurempi kuin 100 Wh/kg. Ennustettu maksimi litium-akun energiatiheydelle on 1000 Wh/kg (huomaa, että kuvassa lukee “May prove impossible to achieve”, mutta olkaamme positiivia ja olettakaamme, että tämä virstanpylväs saavutetaan.) Kuinka suuren osan maailman litiumin tuotannosta tällöin vaaditaan Suomen energiajärjestelmän tukemiseksi?

170 GWh tarkoittaa optimistisilla oletuksilla 70 000 tonnia litiumia. Vuonna 2014 litiumia tuotettiin 35 000 tonnia. Tämä tarkoittaa, että pelkästään Suomessa vaaditaan Breyerin skenaariossa litiumia vuonna 2050 noin kaksi kertaa koko maailman tuotanto vuodelta 2014. Suomi tuotti koko maailman sähköstä noin 0,3 % vuonna 2014. Jos arvioimme, että maailman sähköntuotanto on vuonna 2050 sama kuin nykyään ja että koko maailma haluaisi samanlaisen uusiutuvaan energiaan ja litium-akkujen varaan perustuvan sähköjärjestelmän, niin tarvittavan litiumin louhimiseen kuluisi vuoden 2014 tuotantomäärällä noin 700 vuotta. Jos haluamme louhia vaadittavan litium määrän vuoteen 2050 mennessä, on (keskimääräisen) vuosituotannon noustava noin 20 kertaa nykyistä korkeammaksi. Vaadittu litiumin määrä on myös korkeampi kuin tämän hetkinen arvio globaalista litiumresurssin suuruudesta. Jos oletamme ihmiskunnan energiankulutuksen nousevan suomalaisten tasolle, resurssirajoitteet ovat entistä hankalampia. (Huomionarvoista on myös se, että autoilun sähköistämisen pahin materiaaleista johtuva pullonkaula ei edes välttämättä ole litiumin riittävyys, vaan esimerkiksi dysprosiumin.)

Keskustelimme tässä kirjoituksessa kahdesta tuoreesta Neo-Carbon Energy -projektin ulostulosta energian varastointiin liittyen. Näissä esimerkeissä kustannuksia tai materiaalirajoituksia ei joko arvioitu lainkaan tai niitä arvioitiin (optimistisin oletuksin) erilaiselle systeemille kuin mistä tässä tapauksessa Yleisradion toimittaja juttunsa kirjoitti. Olemme huolestuneita tavasta, jolla suomalaista energiakeskustelua käydään. Energiajärjestelmän dekarbonisointi on aikaa vievä ja hyvin vaikea prosessi. Näemme riskin, että yltiöoptimistinen energiajärjestelmän realiteetit sivuuttava vaihtoehtojen hehkutus ruokkii lyhyellä tähtäimellä vaarallista itsetyytyväisyyttä ja pidemmällä tähtäimellä epäluottamusta ja pettymystä alan tutkijoita kohtaan.

Kirjoittajat: Jani-Petri Martikainen & Aki Suokko. Tämä kirjoitus on julkaistu molempien kirjoittajien blogeissa.


Follow me on Twitter


Punainen risti